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Abstract—High-resolution optical imaging systems are quickly 

becoming universal tools to characterize and quantify microbial 

diversity in marine ecosystems. Automated detection systems such 

as convolutional neural networks (CNN) are often developed to 

identify the immense number of images collected. The goal of our 

study was to develop a CNN to classify phytoplankton images 

collected with an Imaging FlowCytobot for the Palmer Antarctica 

Long-Term Ecological Research project. A medium complexity 

CNN was developed using a subset of manually-identified images, 

resulting in an overall accuracy, recall, and f1-score of 93.8%, 

93.7%, and 93.7%, respectively. The f1-score dropped to 46.5% 

when tested on a new random subset of 10,269 images, likely due 

to highly imbalanced class distributions, high intraclass variance, 

and interclass morphological similarities of cells in naturally 

occurring phytoplankton assemblages. Our model was then used 

to predict taxonomic classifications of phytoplankton at Palmer 

Station, Antarctica over 2017-2018 and 2018-2019 summer field 

seasons. The CNN was generally able to capture important 

seasonal dynamics such as the shift from large centric diatoms to 

small pennate diatoms in both seasons, which is thought to be 

driven by increases in glacial meltwater from January to March. 

Moving forward, we hope to further increase the accuracy of our 

model to better characterize coastal phytoplankton communities 

threatened by rapidly changing environmental conditions. 

Keywords—machine learning, neural network, phytoplankton, 

polar science 

I. INTRODUCTION

The West Antarctic Peninsula (WAP) is a highly productive 
marine ecosystem characterized by large summer phytoplankton 
blooms that support extensive krill and top predator populations 
[1]. The WAP is experiencing significant environmental change, 
threatening this unique and productive ecosystem. One of the 
fastest warming regions on Earth, WAP winter air temperatures 
and surface ocean temperatures have increased by 6°C and 
>1°C, respectively, over the past 50 years [2-4]. In response,
90% of marine glaciers are currently in retreat, the annual ice
season has decreased by 92 days over the last 35 years, and there
is no longer perennial sea ice in the northern WAP [2], [5].

Ocean warming and melting sea ice have impacted the 
phytoplankton community, which has implications for the entire 
food web. Phytoplankton biomass has significantly decreased in 
the northern WAP, associated with a shift from large-
celled 

diatoms to smaller-celled cryptophytes and mixed flagellates 
[6]. This shift is concurrent with an increase in low salinity 
meltwater [7-9]. The increased spatial coverage of low salinity 
surface waters associated with continued glacial and sea ice melt 
is predicted to increase the prevalence of smaller-celled 
phytoplankton communities along the WAP, with important 
implications for food web structure and energy transfer 
efficiency [10]. 

The Palmer Long-Term Ecological Research project (PAL-
LTER) was established in 1991 to investigate how changes in 
sea ice structure the pelagic ecosystem and biogeochemistry 
along the WAP. The project has previously used High 
Performance Liquid Chromatography (HPLC) analysis of 
pigment data to characterize the taxonomic composition of 
phytoplankton assemblages [11]. This technique uses marker 
pigments of phytoplankton groups to assess their contribution to 
the overall abundance. However, HPLC lacks more detailed 
taxonomic classification and cell size information that is critical 
to understanding how warming and melting impacts 
phytoplankton communities along the WAP.   

To fill this knowledge gap, in 2017 the PAL-LTER acquired 
an Imaging FlowCytobot  (IFCB; McLane Labs, Falmouth, MA, 
USA). The IFCB is an automated imaging-in-flow submersible 
cytometer that uses a combination of video and flow cytometric 
technology to collect images and measure chlorophyll 
fluorescence and scattered light for each particle (~10-150 µm) 
in a 5 mL water sample [12]. These images can be analyzed to 
determine cell size dynamics, and sorted taxonomically to the 
genus or species level, thus providing much more detailed 
organismal information than HPLC methods.  

However, the IFCB can generate more than 10,000 high-
quality images every hour, which becomes an immense amount 
of data over the duration of a research cruise or field season. This 
volume of data makes manual image identification impractical, 
therefore, these imaging platforms are often complemented by 
automated detection systems that allow for rapid and precise 
classification of plankton communities. Currently, there are two 
typical machine learning approaches for IFCB images: (1) a 
support vector machine based on a feature selection algorithm 
(88% overall accuracy with 22 classes; [13]), and (2) random 
forest (RF) algorithms (~70% overall accuracy depending on the 
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model and number of classes, e.g., [14]). Following 
advancements in the field of computer vision through deep 
learning [15] the IFCB community is now transitioning to 
convolutional neural networks (CNNs) for improved accuracy 
in image classification. CNNs extract features directly from 
images. Starting with raw imagery and labels, semantically 
meaningful features are learned as the network trains on a set of 
images. In theory, extracted features correspond to components 
of the image relevant to the labels, which makes these models 
highly accurate and well-suited for image classification tasks.  

Since 2017, the PAL-LTER has collected over 10 million 
images spanning four summer field seasons. The goal of our 
study was to develop a CNN to sort WAP phytoplankton into 
taxonomic groups. This would allow for taxonomic 
classification of entire seasons of collected phytoplankton data 
in a short amount of time. Additionally, the CNN could be used 
as a tool to characterize phytoplankton communities in the field 
in near-real time to inform opportunistic sampling strategies.  
The combination of the IFCB and a high-accuracy automated 
classification system would allow the PAL-LTER to learn more 
about shifts in phytoplankton community and size dynamics 
associated with rapidly changing environmental conditions.   

II. METHODS 

A. Phytoplankton Image Collection and Processing 

IFCB data were collected along the West Antarctic 
Peninsula over three summer field seasons: 2017-2018, 2018-
2019, and 2019-2020. Whole water samples were collected at 
various depths from both the January cruise along the WAP 
(Anvers Island in the north to Charcot Island in the south) and 
from seasonal (November-March) sampling at Palmer Station, 
Antarctica. 5 mL from each sample was analyzed with the IFCB 
to acquire images for each phytoplankton cell in the sample. 
Samples were passed through a 150 µm Nitrex screen prior to 
analysis to prevent large cells from clogging the IFCB’s flow 
cell. Cells with a major axis length < 25 pixels (7.35 µm) were 
eliminated from the analysis as the resolution of the images was 
insufficient to provide clear identification.  

Images were processed using methods and software from 
[13] (https://github.com/hsosik/ifcb-analysis/wiki). Image 
processing results in a set of 233 features describing each image 
including fluorescence, scattering intensity, equivalent spherical 
diameter, area, volume, and other morphometric parameters 
such as image texture and histogram of oriented gradients.  

B. Model Development  

Processed images, metadata, and their associated features 
were uploaded to the web application EcoTaxa 
(https://ecotaxa.obs-vlfr.fr) [14]. Using EcoTaxa, a subset of 
18,699 images was visually inspected and manually classified 
into 38 living groups (taxonomic resolution ranging from 
genus to class) and 2 non-living groups (detritus and bubbles), 
with at least 100 images per group. Samples (images + 
features) were augmented to increase training sample size via 
image rotations, flips, gaussian noise, and contrast changes. 
Features were also randomly multiplied by a factor between 
0.8 and 1.2. 

After augmentation, a training dataset of 40,000 samples 
with 1,000 in each class was used to develop a medium 
complexity CNN (8 convolutional layers and 2 million 
parameters), and 3,740 unaugmented images, approximately 
evenly split across classes, were used as a validation dataset. 
Model precision, recall, and f1-score were calculated for the 
unmerged data considering all included groups, and for 
merged data considering only 8 general taxonomic groupings 
(pennate and centric diatoms, cryptophytes, prasinophytes, 
mixed flagellates, haptophytes, microzooplankton, and other). 
The “other” group includes primarily detritus with some 
bubbles. Precision is defined as true positives divided by the 
sum of true positives and false positives; it is the proportion of 
positive identifications that are correct. Recall is defined as 
true positives divided by the sum of true positives and false 
negatives; it is the proportion of actual positives that are 
identified correctly. The f1-score is the harmonic mean of 
precision and recall. Confusion matrices were also generated 
showing the percent of manually validated images predicted in 
each category by the CNN. 

C. Model Validation 

To test the model, we used it to predict on a random subset 
of 10,269 new images filtered by cell major axis length > 25 
pixels. Additionally, we used EcoTaxa’s RF algorithm to 
predict on the same images, using a maximum of 500 images 
per group. Predictions from both models were compared to 
manual identification of the images. Model precision, recall, 
and f1-score were calculated for unmerged and merged data 
for both the CNN and RF models, and a confusion matrix was 
generated for the CNN. 

D. Model Application 

After training and evaluation, our model was used to 
predict taxonomic classifications of phytoplankton collected at 
0 m from Station B near Palmer Station, Antarctica over the 
2017-2018 and 2018-2019 summer field seasons. CNN 
predictions were compared to manual validation of the images 
to determine the accuracy of the predicted seasonal trends.  

E. Sea Ice Characterization 

Sea ice data were calculated using version 3.1 of the  
GSFC Bootstrap sea ice concentrations. Sea ice duration is the 
time elapsed between day of advance and day of retreat. All 
sea ice metrics use the 200 km area south and west of Palmer 
Station. See [16] for more information. 

III. RESULTS 

A. Model Accuracy 

 The overall precision, recall, and f1-score of the model were 
93.8%, 93.7%, and 93.7%, respectively. After merging the 
initial set of 40 classes into the 8 broader taxonomic groups, the 
precision, recall, and f1-score of the model all increased to 
96.5%. Accuracy per group was > 95% for all groups except for 
microzooplankton (> 80%), mixed flagellates (> 90%), and 
other (> 90%). 
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TABLE I.  CONFUSION MATRIX FOR BROAD TAXONOMIC GROUPS 

USING 10,269 NEW, RANDOM IMAGES 
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Pennate  

diatoms 

(n=1577) 

92.9 0.8 0.3 0.6 4.8 0.0 0.0 0.7 

Centric 

diatoms 

(n=249) 

2.8 64.3 5.2 2.4 15.3 0.0 0.0 10.0 

Cryptophytes 

(n=2565) 
9.4 1.0 65.0 4.4 19.8 0.0 0.0 0.5 

Prasinophytes 

(n=493) 
2.6 1.6 0.4 39.6 28.0 0.0 0.0 27.8 

Mixed 

flagellates 

(n=1085) 

11.6 1.5 3.9 7.4 66.2 0.0 0.3 9.2 

Haptophytes 

(n=1) 
0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 

Microzoo-

plankton 

(n=6) 

0.0 16.7 0.0 0.0 16.7 0.0 66.7 0.0 

Other 

(n=3475) 
26.9 10.9 4.9 18.4 23.8 0.0 0.3 14.9 
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  Predicted label 

Using the model to predict on the 10,269 new images 
resulted in unmerged and merged f1-scores of 46.5% and 47.6%, 
respectively. This is a 12% increase in the unmerged f1-score 
over EcoTaxa’s random forest model (46.5% vs. 41.5%, 

respectively; [14]). The model predicted most accurately for 
pennate diatoms (92.9%), and performed moderately well for 
microzooplankton (66.7%), mixed flagellates (66.2%), 
cryptophytes (65.0%), and centric diatoms (64.3%; Table 1). 
Our model was least precise predicting prasinophytes (39.6%) 
and other cells (14.9%; Table 1). Only one haptophyte was 
manually identified in the random dataset but was predicted 
correctly. 

B. Phytoplankton Seasonal Succession at Palmer Station 

Overall, the CNN captured important seasonal trends in 
phytoplankton dynamics. In both the 2017-2018 and 2018-2019 
seasons, peak phytoplankton biovolume occurred midseason (1 
January 2018 and 4 February 2019; Fig. 1). In 2017-2018, the 
peak was dominated by a mix of cryptophytes, prasinophytes, 
and mixed flagellates, while in 2017-2018 the peak was 
dominated by pennate diatoms. The CNN also captured early 
and late season peaks composed of centric diatoms in 2018-2019 
(Fig. 1C-D).  

However, there are several discrepancies between methods. 
In both seasons, but particularly 2017-2018, there were many 
cells manually identified as “other” that were classified as both 
mixed flagellates and prasinophytes by the CNN (Fig. 1). In this 
manner, the CNN appears to overestimate the abundance of 
these groups. The CNN also underestimated the abundance of 
cryptophytes, especially during peak biovolume in both years. 
Importantly, this misclassification of “other” cells also greatly 
overestimates the phytoplankton biovolume compared to 
manual validation, causing the seasonal phytoplankton peak in 
2017 to appear much higher than for manual validation (Fig. 1A-
B).   

The CNN also captured interesting seasonal trends  in the 
diatom community. There was less total diatom biovolume in 
2017-2018 compared to 2018-2019 (Fig. 2A, 2D).  In both 
seasons, centric diatoms shifted from a dominance of  > 20 µm  

 

Fig. 1. Methods comparison of phytoplankton seasonal succession for the (A-B) 2017-2018 and (C-D) 2018-2019 summer field seasons, showing biovolume 
data from (A and C) manual validation and (B and D) CNN predictions. 
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cells in November and December, to a dominance of 10-15 µm 
cells in February and March (Fig. 2B, 2E). Pennate diatoms were 
consistently dominated by cells < 10 µm, with an increase in 
biovolume during February and March, especially in 2018-2019 
(Fig. 2C, 2F). Both seasons were primarily dominated by centric 
diatoms, with the notable exception of a large peak in pennate 
diatom biovolume in 2018 (Fig. 2A, 2D).  

C. Sea Ice Dynamics 

2017 had lower maximum winter sea ice coverage and 
shorter sea ice duration than 2018, but a later sea ice retreat 
(Table 2 and Fig. 3). Sea ice cleared the region rapidly in 2017, 
dropping from 52% coverage in November, to 12% in 
December, and 3% in January (Fig. 3). In 2018, the sea ice 
retreated earlier but coverage stayed higher in the region into the 
summer, with 24% coverage in November, 17% coverage in 
December, and 10% coverage in January (Fig. 3). 

TABLE II.  SEA ICE CHARACTERIZATION 

Year 
Sea Ice Duration 

(days) 

Date of Sea Ice 

Retreat 

2017 132 December 3 

2018 153 November 27 

 

IV. DISCUSSION 

A. Model Development: Successes and Challenges 

Overall, we achieved the goal of our study: to create a CNN 
to accurately sort WAP phytoplankton into taxonomic 
categories. Our overall model achieved an f1-score of 93.7% 
with an increase to 96.5% for merged taxonomic groupings. This 
indicates that our phytoplankton imagery data can be 
successfully and accurately sorted with machine learning 
techniques, greatly reducing the time spent classifying these 
images manually. Absolute comparisons to classification 
algorithms from previous studies is challenging given different 
numbers of classes, data filtering schemes, and methods for 
determining what constitutes test data, but in general these 
metrics compare very favorably to other models. The 
development of regional and global phytoplankton classifying 
CNNs presents an opportunity to greatly advance our 
understanding of plankton diversity and ecology.   

However, our model f1-score dropped dramatically from 
93.7% during model development to 46.5% during model 
validation on a new, random dataset with a class distribution 
representative of that found in natural waters. We believe that 
this large decrease in model accuracy is a key challenge rarely 
addressed in the literature. One reason for this decrease is the 
highly imbalanced class distributions of naturally occurring 
phytoplankton assemblages compared to our model testing 

 

Fig. 2. Diatom seasonal diversity as predicted with the CNN for the (A-C) 2017-2018 and (D-F) 2018-2019 summer field seasons. (A and D) Total biovolume 
attributed to pennate and centric diatoms. (B and E) Total biovolume attributed to different size classes of centric diatoms. (C and F) Total biovolume attributed 
to different size classes of pennate diatoms.  
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dataset (e.g., see n values in Table 1). Model categories such as 
detritus are highly abundant in our dataset, often composing up 
to 50% of the biovolume in a sample, while other ecologically 
important groups, such as large, morphologically distinct 
diatoms including Corethron penatum and Eucampia antarctica 
are encountered sporadically in our dataset. A minor 
misclassification of detritus as a rare class can easily overwhelm 
that category. 

Nearly all previous studies report accuracy for a balanced 
and curated test dataset rather than a random sample of natural 
waters. During model development a balanced class distribution 
is necessary to ensure the model equally weights each category 
during training. For example, if during model development a 
single class composed 90% of the training dataset, the model 
could classify every sample as that class, ignoring all others, and 
be 90% accurate. The gradient descent optimization algorithm 
would never learn any other classes. In the few studies that do 
report accuracy in natural samples, our drop-off is similar (See 
Table 2 in [13]).  

The classes being naturally highly imbalanced creates 
several model development choices, including whether to 
exclude, up-sample, or augment low incidence classes, and how 
specific model classifications should be (e.g., high level classes 
like diatoms, dinoflagellates, etc. or species level classes like 
Thalassiosira and Gyrodinium). We tried to strike a balance in 
our model setup by eliminating rare classes or merging them into 
broader groups while keeping groups morphologically distinct 
to prevent model confusion. However, there remains a degree of 
high intraclass variance and interclass similarity in morphology 
that was impossible to eliminate (e.g., 14.9% classification 
accuracy for “other”; Table 1). This challenge can be addressed 
on the other end of model development, by filtering samples 
where model uncertainty is high. The CNN outputs a confidence 
score (from the Softmax classification layer) for each prediction 
from 0 to 1 that can be used to filter samples below a certain 
threshold. While potentially increasing the model accuracy, this 

could also bias the system against certain classes that are 
challenging to classify, and thus was not implemented in this 
work. 

Another potential cause of reduced model accuracy is data 
labelling errors. Theoretically, manual identification of images 
should be close to perfect, but unfortunately this is not the case. 
In this work and most others, there is often a bias for training 
and test data that is easily identifiable by manual validation, 
which prevents test metrics from translating exactly to the wild. 
There are also many images with conglomerations of cells 
including detritus and multiple living species. While these may 
be manually sorted into a category labelled “multiple” and 
discarded from the analysis, a CNN might sort these images into 
the most prominent class present within each image. 
Additionally, morphologically ambiguous cells may be sorted 
more accurately by a CNN than by manual identification, as a 
CNN can mathematically match image attributes to potential 
groups. One way we attempted to eliminate a portion of these 
ambiguous cells was to exclude all cells with a major axis length 
less than 25 pixels (7.35 µm) prior to model training. These 
small cells are below the quantifiable limit of detection based on 
instrument resolution, and thus have a high probability of being 
incorrectly identified. Accurately classifying these smaller cells 
will likely require techniques other than imaging. The issues of 
class imbalance can also magnify labelling errors, especially 
when these errors are within abundant classes such as “detritus”. 

B.  Phytoplankton Seasonal Succession at Palmer Station 

Like other studies, we found that following a winter with low  
sea ice (2017), the phytoplankton community had less diatoms, 
and more mixed flagellates and cryptophytes, and following a 
winter with high sea ice (2018), the community was dominated 
by diatoms (Figs. 1, 3, Table 2) [9], [17]. Following trends found 
in previous years at Palmer Station [9], we also saw diatoms 
dominate in the early and late season, and higher cryptophyte 
concentrations in December and January. 

Along the WAP, phytoplankton show strong interannual and 
regional variability timed with light availability and sea ice 
retreat. As day length increases in austral spring, solar warming 
and sea ice melt stabilize the upper water column allowing 
phytoplankton to remain near the surface in waters with high 
light availability [18-19]. These conditions initiate large diatom-
dominated spring blooms, as we saw in 2018 [20-21]. In 2017, 
there was 52% sea ice coverage in November, likely inhibiting 
light penetration and subsequent phytoplankton growth. 
Dramatic reduction in sea ice coverage between November and 
December indicates that the ice was rapidly advected out of the 
region, reducing sea ice melt near Palmer Station and potentially 
reducing the stability of the upper mixed layer. In 2018, although 
sea ice retreat is six days later than in 2017, November sea ice 
coverage is only 24%, allowing adequate light for phytoplankton 
growth. Additionally, the sea ice lingers into December and 
January (17% and 10%, respectively), providing a stable 
environment for growth well into the summer. Matching our 
results, [22] found that rapid sea ice retreat was associated with 
lower proportions of centric diatoms during the spring in Ryder 
Bay, Antarctica (Fig. 2). Sea ice can also hold populations of ice 
algae, which can seed coastal regions during melting in spring 
[23]. It is possible that with rapid sea ice advection from the 

 

Fig. 3. Percent sea ice coverage in the 200 km area south and west of Palmer 
Station during the 2017-2018 season (black) and the 2018-2019 season 
(blue).  
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region in 2017, less ice algae were released to the coastal region 
near Palmer Station than in 2018 when sea ice lingered and 
contributed more meltwater. 

Despite differences in phytoplankton abundance and 
community structure between the two years, there were similar 
trends in the diatom community. The early season was 
dominated by large centric diatoms > 20 µm timed with sea ice 
retreat as described above. As both seasons progressed, centric 
diatoms became smaller (< 20 µm), and the abundance of 
pennate diatoms < 10 µm increased (Fig. 3). A explanation for 
this size shift is the increasing amount of glacial meltwater from 
January to March [24]. Stronger surface stratification due to 
increased ice melt can reduce nutrients in surface waters, giving 
an advantage to smaller phytoplankton with high surface-area-
to-volume ratios and reduced sinking rates [26]. Additionally, 
[25] experimentally exposed phytoplankton populations from 
Potter Cove, Antarctica to low salinity conditions (30 PSU) and 
found a decline in the abundance of large centric diatoms from 
~90% on day 2 to ~0% on day 7, and an increase in abundance 
of small pennate diatoms from ~0% on day 4 to ~95% on day 8. 
They attribute these changes to differing osmotic stress 
tolerances: in large centric diatoms, a decrease in salinity caused 
cell size increases, compression of chloroplasts, granularization 
of the protoplasm, and retraction of the cytoplasm, while some 
small pennate diatoms (e.g., Fragiliariopsis cylindrus) may 
contain genes beneficial for adaptation to extreme 
environmental conditions in polar oceans and sea ice. Thus, 
increases in glacial meltwater in late summer could cause diatom 
communities to become smaller and increasingly dominated by 
pennate cells as we observed.  

C. Conclusions and Next Steps 

Our CNN is a step forward for understanding phytoplankton 
ecology along the WAP. However, there are still improvements 
to be made before it becomes a long-term tool for the 
community. As explained above, an important issue to address 
is class imbalance compounded with labelling errors of 
abundant classes. One potential way to better represent these 
undifferentiated classes (e.g., “detritus” or “multiple”) is to use 
unsupervised methods (e.g., non-linear dimensionality 
reduction, clustering, and manifold learning) to break these 
classes into several new groups. Defining classes purely via data 
rather than taxonomy could help models with potentially more 
easily separable decision boundaries. These techniques could 
also reduce manually labeled training data needs with semi-
supervised classification, and in many cases unsupervised 
techniques may be sufficient for answering questions about 
phytoplankton dynamics without any need for supervised 
classification [27]. Another method could be to use a stage-wise 
approach, with a one-class-classifier or binary classification to 
exclude “detritus” and “multiple” images up front to limit the 
spread of these issues into the full output range which is 
exacerbated by the prevalence of these classes. In tandem to 
improving the classification itself, per class uncertainty 
estimates (sensu [13]) will be critical to unbiased extrapolation 
from CNN output to ecological dynamics. 

With further increases in model accuracy, we hope our 
model will become a helpful tool for phytoplankton research. 
Long-term warming and sea ice declines along the WAP are 

contributing to shifts to smaller and less abundant phytoplankton 
populations [6], and these trends are likely to continue. 
Understanding the seasonal and spatial dynamics of 
phytoplankton diversity is integral to contextualizing how 
communities will change in the future. Beyond the CNN’s 
ability to rapidly classify entire seasons of collected 
phytoplankton imagery, it can also be used to characterize 
phytoplankton communities in near-real time. Getting a 
snapshot of species and cell size dynamics soon after collecting 
a sample would aid in opportunistic sampling while still in the 
field. This would be invaluable, as research time in Antarctica is 
both limited and expensive.  

 Lastly, the PAL-LTER is not the only group experiencing 
these challenges: there is a broad IFCB user community 
searching for methods to automate sample classification to 
reduce the need for manual image validation. Various groups are 
independently creating phytoplankton CNNs and other models 
for their study sites of interest. We implore the community to 
begin reporting their model metrics on data with distributions 
representative of the natural environment, sharing labeled data 
openly on freely accessible platforms (e.g., EcoTaxa, IFCB 
Dashboard), and sharing open and reproducible code for 
processing and model development. As models improve, the 
community may be able to develop a series of regional models, 
freely available to download and classify a worker’s data, or 
even a single generalizable model usable for the world oceans. 
Moving forward towards this vision, it will be critical for 
oceanographers to collaborate with computer scientists and 
modelers, incorporating the best computer vision and 
classification techniques to these datasets to ultimately better 
understand phytoplankton dynamics in a changing ocean.  
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