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Abstract
The West Antarctic Peninsula (WAP) is a highly productive polar ecosystem where phytoplankton dynamics

are regulated by intense bottom-up control from light and iron availability. Rapid climate change along the
WAP is driving shifts in the mixed layer depth and iron availability. Elucidating the relative role of each of these
controls and their interactions is crucial for understanding of how primary productivity will change in coming
decades. Using a combination of ultra-high-resolution variable chlorophyll fluorescence together with fluores-
cence lifetime analyses on the 2017 Palmer Long Term Ecological Research cruise, we mapped the temporal and
spatial variability in phytoplankton photophysiology across the WAP. Highest photosynthetic energy conver-
sion efficiencies and lowest fluorescence quantum yields were observed in iron replete coastal regions. Photo-
synthetic energy conversion efficiencies decreased by ~ 60% with a proportional increase in quantum yields of
thermal dissipation and fluorescence on the outer continental shelf and slope. The combined analysis of vari-
able fluorescence and lifetimes revealed that, in addition to the decrease in the fraction of inactive reaction cen-
ters, up to 20% of light harvesting chlorophyll-protein antenna complexes were energetically uncoupled from
photosystem II reaction centers in iron-limited phytoplankton. These biophysical signatures strongly suggest
severe iron limitation of photosynthesis in the surface waters along the continental slope of the WAP.

Iron availability limits phytoplankton growth and production
across ~ 30% of the ocean’s surface (Moore et al. 2013). However,
iron requirements vary dramatically among species (Ho et al. 2003)
and phytoplankton communities may remain relatively iron
replete even in regions with extremely low concentrations of iron,
such as the South Pacific Gyre (Bonnet et al. 2008). Conse-
quently, there is a need to develop sensitive diagnostic tools for
iron limitation in phytoplankton (Hopkinson et al. 2007;
Behrenfeld and Milligan 2013). The Southern Ocean has garnered
particular interest as it is the world’s largest iron-limited region
(Boyd 2002; Strzepek et al. 2012).

Over several decades, variable fluorescence signals from
photosystem II (PSII) have been used to measure photosyn-
thetic conversion efficiencies. This efficiency, commonly den-
oted as Fv/Fm, is the quantum yield of photochemistry in PSII
(ΦPSII); that is, the ability of absorbed light to drive photosyn-
thetic electron transport from water to a terminal electron
acceptor (Kolber et al. 1998). The rate of induction of variable

fluorescence on the microsecond time scale can also be used
to calculate the effective absorption cross section of PSII (σPSII)
(Kolber et al. 1998; Gorbunov and Falkowski 2005). This latter
parameter is a product of the optical absorption cross
section of PSII (i.e., the size of the PSII antennae) and the
quantum yield of photochemistry in the reaction center
(RC) (Ley and Mauzerall 1982; Kolber et al. 1998; Falkowski
et al. 2004; Falkowski and Raven 2014).

Fluorescence emission and nonradiative thermal dissipa-
tion (with the quantum yields of ΦF and ΦT, respectively)
compete with photochemistry to dissipate absorbed photons
(Butler and Strasser 1977; Butler 1978; Falkowski et al. 2017).
The three are complementary, meaning the sum of the three
yields is 1.00 (Butler 1978). Moreover, they are remarkably
sensitive to the effects of iron limitation on phytoplankton
physiology (Lin et al. 2016). Extensive measurements of vari-
able fluorescence under iron limitation have revealed sub-
stantial decreases in maximal ΦPSII and pronounced increases
in σPSII. These responses were observed in cultures (Greene
et al. 1991; Vassiliev et al. 1995; Strzepek et al. 2012, 2019)
and in situ (Greene et al. 1994; Gervais et al. 2002; Suzuki
et al. 2002; Behrenfeld and Milligan 2013). Furthermore,
shipboard and in situ iron enrichment experiments, revealed
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rapid increases in Fv/Fm and decreases in σPSII following
iron amendment (Gervais et al. 2002; Hutchins et al. 2002;
Coale et al. 2004; Hopkinson et al. 2007; Moore et al. 2007;
Ryan-Keogh et al. 2017).

Low ΦPSII reflects a downregulation in functional RCs, com-
plemented by an increased pool of light harvesting complexes
(LHC), some energetically uncoupled from the RCs (Greene
et al. 1991; Schrader et al. 2011; Macey et al. 2014). The LHCs
that are still coupled energetically serve fewer functional RCs,
resulting in an increased σPSII. With this, phytoplankton econo-
mize the high iron quota of RCs (Strzepek et al. 2012). At low
light, large LHCs increase excitation energy loss through ther-
mal dissipation and fluorescent emission before being trapped
in an active RC (Wientjes et al. 2013). In the Southern Ocean,
Strzepek et al. (2019) proposed the low temperatures mitigate
this loss. Conversely, at saturating light, the few active RCs are
subjected to overexcitation and damage (Greene et al. 1992).
To cope, iron-limited phytoplankton increase rapid non-
photochemical quenching (NPQ) components (Petrou
et al. 2011; Alderkamp et al. 2013). NPQ represents a suite of
photoprotective mechanisms activated at high light, effectively
increasing ΦT and simultaneously decreasing σPSII (Goss and
Lepetit 2015; Kuzminov and Gorbunov 2016; Buck et al. 2019).
Further work is needed to rapidly assess the occurrence and
function of these physiological responses to iron limitation in
natural assemblages (Behrenfeld and Milligan 2013). However,
for a truly comprehensive evaluation, an additional yield needs
to be measured alongside ΦPSII. Previous studies have suggested
methods to derive additional yields from variable fluorescence
(Hendrickson et al. 2004; Kramer et al. 2004). However, these
methods critically depend on a priori assumptions regarding
the antenna-RC organization.

To that end, we developed an extremely sensitive, sea-going
instrument, PicoLiF (Picosecond Lifetime Fluorescence), which
continuously measures in situ chlorophyll fluorescence lifetimes
in the picosecond time domain. When the measured lifetimes
are normalized to the natural lifetime (15,000 ps, or 15 ns in
the case of chlorophyll a [Chl a]; Brody and Rabinowitch 1957),
the result is the quantum yield of fluorescence, ΦF. As all three
quantum yields sum to unity, direct measurements of ΦPSII and
ΦF allow quantification of ΦT by difference (Lin et al. 2016) and
the fraction of energetically uncoupled LHC-RC complexes
(Park et al. 2017). In addition, they provide insight into regula-
tion of energy transfer (Buck et al. 2019) and photoprotection
(Kuzminov and Gorbunov 2016) in PSII. In the oceans, ΦF var-
ies about fivefold in response to light and nutrients (Lin
et al. 2016). Indeed, the direct measurement of ΦF from lifetimes
in the picosecond time domain is the only way to calibrate or
verify remotely sensed ΦF, which is a highly derived product
(Huot et al. 2005; Behrenfeld et al. 2009; Lin et al. 2016).

Here, we evaluated surface phytoplankton photophysiology
in the West Antarctic Peninsula (WAP). In this region, a cross
shelf iron gradient exists, hypothesized to control phytoplank-
ton abundance and productivity (Annett et al. 2017). Custom-

built fluorometers were deployed during the 2017 annual
WAP Long Term Ecological Research cruise in the austral
summer. A FIRe (Fluorescence Induction and Relaxation)
instrument measured Fv/Fm, σPSII. Simultaneously, the PicoLiF
instrument measured fluorescence lifetimes. We hypothesized
our combined measurements would reveal a distinct iron-
limited physiology, with significantly higher ΦT, and an
increased pool of uncoupled LHC-RC in the WAP offshore
waters.

Materials and methods
Study area

Data were collected on board the ASRV Laurence M. Gould.
Sampling was carried out along perpendicular cross shelf tran-
sects spaced 100 km apart. The study region corresponds to
the LTER project grid lines 100–600 (Waters and Smith 1992)
(Fig. 1). Following Steinberg et al. (2015), we differentiate
between three subregions across the WAP: the shallow coastal
region, the continental shelf, and the deep continental slope
roughly 200 km offshore.

Sample collection and analysis
Sampling stations were at 20 km intervals along each grid

line. Samples were collected for Chl a and dissolved inorganic
nutrients (nitrate, phosphate, and silicate) following Carvalho
et al. (2019). Variable fluorescence and fluorescence lifetime
data were collected continuously from surface waters (~ 5 m)
while underway with FIRe and PicoLiF fluorometers respec-
tively, as described by Lin et al. (2016). The instruments used
flow through cuvettes connected to the ship’s surface water
intake pump. The water passed through two de-bubblers prior
to entering the cuvette.

Mixed layer depth (MLD) was defined as the depth at
which the maximum buoyancy frequency was observed in
CTD profiles, following Carvalho et al. (2017). The critical
depth was calculated from surface daily integrated photosyn-
thetically available radiation (PAR), collected from the mast of
the ship (QSR-240P, Biospherical Instruments) and the light
attenuation coefficient (KPAR) calculated from the empirical
relationship of KPAR and Chl a concentration, as proposed by
Sverdrup (1953) and Nelson and Smith (1991). Night and day
were differentiated using NOAA’s solar calculator (https://
www.esrl.noaa.gov/gmd/grad/solcalc/).

Photophysiology
We recorded variable fluorescence using a mini-FIRe instru-

ment as previously described (Gorbunov and Falkowski 2005;
Kuzminov and Gorbunov 2016). Variable fluorescence was
induced by a saturating single turnover flash (STF) from blue
light-emitting diodes (450 nm with 30 nm half bandwidth),
which cumulatively reduce all PSII RCs within ca. 100 μs. This
excitation protocol results in minimum and maximum fluo-
rescence yields (F0 and Fm). The quantum yield of photochem-
istry in PSII was then calculated as (Fm−F0)/Fm = Fv/Fm
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(Butler 1978; Kolber et al. 1998). The effective absorption cross
section of PSII, σPSII (at 450 nm), is calculated by fitting the
fluorescence rise to a cumulative one-hit Poisson function
(Ley and Mauzerall 1982).

Every ~ 30 min the flow through on the mini-FIRe was
automatically paused in order to conduct slow fluorescence
irradiance (FE) curves. These were used to retrieve electron
transport rates (ETR) as a function of irradiance and to charac-
terize the state of phytoplankton photoacclimation to their
short- and long-term light history (Falkowski 1994; Ralph and
Gademann 2005). During FE curves, the water sample was
trapped in the cuvette for ca. 10 min and then exposed to
increasing PAR levels (0–800 μmol photons m−2 s−1) with an
actinic blue light source (450 nm). Every light step lasted

30–40 s to promote short-term acclimation to each new PAR
level, followed with standard measurements. FE curves in this
study are termed slow as light steps were longer than other
comparable studies, where light steps lasted 10–20 s (Serôdio
et al. 2006; Suggett et al. 2015). This was done, as the acclima-
tion is slower at lower water temperatures. From FE curves, we
calculated the rate of photosynthetic electron transport nor-
malized per PSII RC (ETRPSII, with units of e− s−1 RC−1), as a
function of PAR (Gorbunov et al. 2000, 2001) from

ETRPSII = E× σPSII × ΔF0=F0m
� �

= Fv=Fmð Þ� � ð1Þ

Here, E is irradiance, Fv/Fm and σPSII are measurements in
the dark (PAR = 0), respectively. ΔF0=F0m is the quantum yield

Fig 1. West Antarctic Peninsula (WAP) Long Term Ecological Research (LTER) site. Insert at top left shows the WAP in relation to South America. Black
dots on main figure represent the sampling stations along the 100 line in the south to the 600 line in the north. Red dashed lines denote the three subre-
gions along the WAP; the coast, the continental shelf and the continental slope. Red star is the location of the U.S Palmer station on Anverse Island.
Bathymetry in figure and insert is from ETOPO1 dataset.
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of photochemistry at a given PAR level, with the prime nota-
tion indicating measurement under ambient light (ΔF0 = F0m−F0

, where F0 is a steady-state fluorescence at a given light step).

FE curves were than fitted to a hyperbolic tangent function to
derive maximal ETR through PSII (ETRmax

PSII ), and the EK value
(saturating light level) following Jassby and Platt (1976) as

ETRPSII = ETRmax
PSII × tanh E=EKð Þ ð2Þ

Picosecond fluorescence decays, measured with the PicoLiF,
were deconvoluted from the instrument response function
and fitted to a sum of three exponentials with a custom
TCSPFIT Matlab package utilizing a Nelder-Meade simplex
algorithm (Enderlein and Erdmann 1997). ΦF was then calcu-
lated from

ΦF = τ=τ0 ð3Þ

where τ is the measured lifetime and τ0 is the natural lifetime
of Chl a (Brody and Rabinowitch 1957; Brody 2002). The nat-
ural lifetime is the time that would be required for a molecule
to return to the ground state from an excited state if fluores-
cence were the sole dissipation pathway. For Chl a, τ0 is 15 ns
and is constant, independent of solvent, organism or environ-
mental condition (Brody and Rabinowitch 1957; Brody 2002;
Lakowicz 2006). We then calculated the quantum yield for
thermal dissipation (ΦT) as

ΦT = 1−
Fv
Fm

+
τ

τ0

� �
ð4Þ

All fluorescence measurements were corrected for the blank
signal measured routinely from filtered seawater (0.2 μm)
(Bibby et al. 2008). To minimize changes in temperature, the
flow through system relies on thick walled tubing for
insolation.

In the current setup, phytoplankton experienced ~ 10 min
of low-light acclimation from the time they entered the ship’s
underway system to when the FIRe and PicoLiF measurements
were conducted. In this time frame, most of the rapid NPQ
mechanisms (e.g., xanthophyll cycling) relax, leading to a
recovery in Fv/Fm. However, this time is not sufficient to alle-
viate the effects of photoinhibition, which requires > 10 min
to recover (Alderkamp et al. 2013). Considering this, our stan-
dard measurements represent a state in which phytoplankton
are not in an entirely low-light acclimated state. In effect, this
means that Fv/Fm may be slightly underestimated when the
measurements are conducted during the day. This issue is
more pertinent for the calculation of ETR, as the underlying
assumption relies on a truly low-light acclimated baseline
(Eq. 1). As there is an additional low-light acclimation period
before a FE curve is measured the deviations mentioned above
would decrease. In any case, from Eq. 1 it can be seen that

underestimating Fv/Fm and σPSII results in an underestimation
of ETR. To minimize any under- or overestimations, preferen-
tial weight is given to data collected during the night.
Although data collected during the day may cause some issues
in interpretation, we argue that the low-light acclimation
periods used here are sufficient nonetheless to provide distinct
differences in the photophysiological status of phytoplankton
in response to iron and light availability in this region.

Statistical analyses
The average of each photophysiological variable reported

in this paper represents the median value. The median was
chosen because each individual variable was not normally dis-
tributed and included statistical outliers. To describe the devia-
tion from the median, we calculated the median absolute
deviation, a robust measure of dispersion around the median
(Leys et al. 2013). For improved spatial comparison of vari-
ables, surface maps were produced using a Locally Weighted
Scatter-plot Smoother. Significance with a ρ ≤ 0.05 was deter-
mined from Pearson’s linear correlation.

Results
WAP physical and chemical setting

Surface concentrations of Chl a ranged from 0.06 to
16.9 mg m−3. Surface Chl a concentration significantly corre-
lated with distance to shore (Table 1), with higher concentra-
tions along the coast, decreasing offshore over the continental
shelf and slope (Fig. 2a). Macronutrients were replete along
the entire grid, with increasing nitrogen (as nitrate) and phos-
phate over the slope (Fig. 2b,c). Furthermore, N/P ratio tracked
closely with the canonical 16/1 Redfield ratio, indicating that
nitrogen and phosphate were not limiting factors in this
region. Silicate, a crucial nutrient for diatoms, also decreased
but was still abundant nonetheless (Fig. 2d). Overall, our data
support the notion that along the WAP, oceanic conditions
transition over a short distance (~ 200 km), from a coastal- to
an HNLC-ecosystem over the continental slope, where previ-
ous studies indicate iron depletion (Annett et al. 2017).

Table 1. Pearson’s linear correlation coefficients matrix between
independent variables (surface PAR and distance to shore) and
dependent variables (Fv/Fm, fluorescence lifetime, ΦT, σPSII, sur-
face Chl a concentration, and ETRPSIImax ). All coefficients are signifi-
cant (ρ�0.05).

Surface PAR Distance to shore

Fv/Fm −0.444 −0.614
Fluorescence lifetime −0.481 0.644

ΦT 0.435 0.653

σPSII −0.237 0.624

Surface Chl a conc. 0.089 −0.406
ETRmax

PSII 0.522 0.319
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Spatial variability in photophysiological parameters
Surface maps of Fv/Fm, fluorescence lifetimes, σPSII and ΦT

show clear gradients across the continental shelf (Fig. 3;
Table 2). The differences are significant, showing the highest
degree of correlation with distance from shore (Table 1). As
seen in Table 2, throughout a diel cycle, Fv/Fm values along
the coast were relatively high (0.42 � 0.06), and progressively

decreased by up to 50% offshore along the shelf (0.3 � 0.08)
and slope (0.22 � 0.04). Fluorescence lifetimes, in contrast,
increased offshore. Along the coast fluorescence, lifetimes
were relatively low, 0.77 � 0.07 ns, increasing to
1.03 � 0.17 ns along the shelf and 1.29 � 0.23 ns along the
slope. Consequently, ΦT increased from 0.5 � 0.05 along the
coast, to 0.62 � 0.06 and 0.69 � 0.04 at the shelf and slope.

Fig 2. Surface distribution maps of; (a) Chl a, (b) nitrate and nitrite c-phosphate, and (d) silicate. Data collected from CTD rosette cast or underway
water collection, denoted by black dots. Red dashed lines highlight the borders between the WAP coast, shelf and slope regions. Note that Chl a is pres-
ented on a logarithmic scale to accommodate a range in orders of magnitude.
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Similarly, σPSII increased from 484 � 54 Å2 along the coast to
694 � 132 Å2 over the shelf, reaching 760 � 168 Å2 at the

slope. Likewise, diel averaged ETRPSII
max rates progressively

increased from 58�107 e− s−1 RC−1 along the coast to
137�55 and 230�105 e− s−1 RC−1 out over the shelf and
slope (Table 2).

Diel variability in photophysiological parameters
Both Fv/Fm and fluorescence lifetimes displayed a pro-

nounced diel cycle throughout the WAP (Fig. 4), negatively
correlated with surface PAR (Table 1). Median Fv/Fm values
during the night across the whole grid were 0.38 � 0.1, con-
current with an average fluorescence lifetime of

Fig 3. Surface distribution maps of; (a) Fv/Fm, (b) σPSII, (c) fluorescence lifetime, and (d) thermal dissipation quantum yield (ΦT). Fv/Fm and σPSII collected
from underway FIRe measurements. Fluorescence lifetime collected from underway PicoLiF measurements. ΦT calculated from Eq. 4. Black dots denote
measurement locations. Red dashed lines highlight the borders between the WAP coast, shelf and slope regions.
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1.03 � 0.21 ns. During the day, as light intensity increased,
Fv/Fm decreased by ~ 20% to 0.29 � 0.1, while fluorescence
lifetimes decreased to 0.84 � 0.15 ns. Conversely, ΦT increased
from 0.53 � 0.08 to 0.61 � 0.09 between night and day
(Table 2). A weak negative correlation between σPSII and PAR
intensities was seen (Table 1). However, despite this, a diel
cycle was not a prominent feature, particularly along the coast
(Fig. 5d; Table 2), and σPSII values during the night and day
averaged 588 � 126 Å2 and 564 � 120 Å2, respectively

(Table 2). On the other hand, ETRPSII
max correlated positively

with PAR (Table 1). During the night ETRPSII
max was low (64�21

e− s−1 RC−1), while during the day ETRPSII
max more than doubled

(149�53 e− s−1 RC−1) (Table 2).

Discussion
Our results reveal a clear gradient in photophysiological

characteristics across the continental margin of the WAP
(Fig. 3; Table 2). This gradient is consistent with bottom-up
control by iron availability in surface waters and supports the
hypothesis that iron strongly limits phytoplankton photo-
chemical energy conversion offshore (Annett et al. 2017; Scho-
field et al. 2018). The combination of variable fluorescence and
lifetimes revealed an increased amount of uncoupled LHC com-
plexes under iron limitation (Fig. 6) as well as a clear tradeoff
between photochemistry and thermal dissipation (Fig. 7),

resulting from the spatial gradient in iron stress across the
WAP. To support this conclusion, we discuss a number of phys-
iological responses to iron limitation across the WAP. These
include spatial variabilities in nighttime values and diel cycles
of photophysiological parameters, LHC-RC uncoupling, and

ΦT. In addition, we examine the variability in ETRPSII
max.

At night, when NPQ is nil (Lin et al. 2016), Fv/Fm over the
continental slope decreased by 50% in comparison to the iron
richer regions closer to the coast (Table 2). At the same time,
fluorescence lifetimes and σPSII increased by 85% and 65%,
respectively. These trends are diagnostic of iron stressed pho-
tosynthesis along the continental slope. The extremely high
values of σPSII offshore corroborate previous laboratory mea-
surements on iron-limited Southern Ocean species (Strzepek
et al. 2019). Diel cycles of photophysiological parameters were
similar across the WAP, with a nighttime maxima and midday
minimum (Fig. 5). However, the magnitude of diel variations
was much larger in iron-limited regions (Fig. 5; Table 2).
The diel cycles observed in the iron-limited WAP continental
slope contrast with previously established signatures of iron
limitation observed in the Equatorial Pacific (Behrenfeld
and Kolber 1999). In that region, dominated by cyanobacteria,
Fv/Fm decreased by 35–60% following the sunset and recov-
ered at sunrise, resulting in a pillared nighttime feature.
Behrenfeld and Kolber (1999) concluded this diel fluorescent
pattern was due to state transitions in iron-limited plankton.

Table 2. Median and median absolute deviation of photophysiological parameters; Fv/Fm, σPSII, fluorescence lifetime, ΦT, and ETRPSIImax.
Data were parsed by location; coast, shelf and slope, and by time; night or day.

Night Day Full diel cycle

Fv/Fm Coast 0.48 � 0.03 0.39 � 0.07 0.42 � 0.06

Shelf 0.35 � 0.07 0.27 � 0.08 0.3 � 0.08

Slope 0.24 � 0.03 0.19 � 0.04 0.22 � 0.04

Full grid 0.38 � 0.1 0.29 � 0.1 0.31 � 0.1

σPSII [Å2] Coast 476 � 42 492 � 58 484 � 54

Shelf 710 � 142 678 � 125 694 � 132

Slope 792 � 174 744 � 162 760 � 168

Full grid 588 � 126 564 � 120 568 � 124

Fluorescence lifetime (ns) Coast 0.81 � 0.08 0.76 � 0.1 0.77 � 0.09

Shelf 1.11 � 0.13 0.97 � 0.18 1.03 � 0.17

Slope 1.5 � 0.06 1.07 � 0.21 1.29 � 0.23

Full grid 1.03 � 0.21 0.84 � 0.15 0.9 � 0.17

ΦT Coast 0.46 � 0.02 0.53 � 0.05 0.5 � 0.05

Shelf 0.58 � 0.06 0.65 � 0.07 0.62 � 0.06

Slope 0.66 � 0.02 0.72 � 0.09 0.69 � 0.04

Full grid 0.53 � 0.08 0.61 � 0.09 0.59 � 0.09

ETRmax
PSII (e− s−1 RC−1) Coast 58 � 15 119 � 37 107 � 39

Shelf 59 � 17 176 � 53 137 � 55

Slope 208 � 118 263 � 100 230 � 105

Full grid 64 � 21 149 � 53 128 � 55
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Such diel patterns were not observed in iron-limited regions in
the WAP (Figs, 4, 5). This is because phytoplankton assem-
blages in the WAP are dominated by diatoms (Schofield
et al. 2017), in which state transitions are absent (Owens 1986).

We next consider the occurrence of energetically
uncoupled LHC complexes. The basic biophysical model for
energy distribution in the photosynthetic unit predicts an
inverse relationship between low-light acclimated ΦPSII and ΦF

(Butler 1978; Lin et al. 2016; Falkowski et al. 2017). The corre-
lation between Fv/Fm and fluorescence lifetime collected at
night validates our assumption of linearity in these two yields
(Pearson’s linear correlation coefficient of −0.91, ρ < 0.05).
However, the data are not consistent with Butler’s model
(Fig. 6). To calculate the fraction of uncoupled LHC com-
plexes, the relationship between Fv/Fm and fluorescence life-
time was modeled for three physiological states with
different lifetimes (Park et al. 2017). Two states represent
cases in which LHC complexes are coupled to RCs and RCs
are fully open or fully closed with lifetimes of 0.5 and 1.5 ns,
respectively. The third represents uncoupled LHCII com-
plexes with a very long lifetime of 4 ns (Palacios et al. 2002).
The presence of such energetically detached antenna com-
plexes would ultimately lead to longer measured lifetimes,
and these lifetimes may exceed the values observed for fully
closed RCs (~ 1.5 ns).

In Fig. 6, nighttime Fv/Fm values are plotted against lifetimes.
A distinct deviation from the classical inverse relationship
predicted by Butler’s model is seen at the low Fv/Fm. Moreover,
two clusters are clearly seen. The first cluster represents coastal
data, with high Fv/Fm, low fluorescence lifetimes and small σPSII.
This coastal cluster aligns fairly well with the modeled case for
open RC with nearly fully coupled antenna complexes, as
expected for iron-replete conditions. The second cluster repre-
sents data from the continental slope, with low Fv/Fm and long
fluorescence lifetimes. This analysis suggests that 20–30% of
antenna complexes are detached in iron-limited waters offshore.

Over the WAP slope, ΦT significantly increased (Fig. 3d;
Table 2), confirming our hypothesis that phytoplankton
increase ΦT as iron limitation intensifies. At night, in the
absence of NPQ, ΦT along the slope was ~ 45% higher than in
coastal waters (Table 2). This increase in ΦT is driven by a
reduction in the photosynthetic use efficiency. With few
active RC, and a significantly large and uncoupled LHC, exci-
tons are more likely to dissipate as heat (Strzepek et al. 2019).
In addition to the positive correlation with distance to shore,
ΦT also positively correlated with increasing light availability
(Table 1). During the day, ΦT increased by an additional 15%
across the WAP (Table 2), yet offshore values were still ~ 40%
higher than onshore values. This daytime increase in ΦT indicates
NPQ activation that effectively increases thermal dissipation. As
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Fig 4. Diel cycles in (a) Fv/Fm (blue) and (b) fluorescence lifetime [ns] (blue) on the left Y axis from underway FIRe and PicoLiF measurements. Right Y-
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iron-stressed phytoplankton are more prone to photooxidative
damage at the active RCs (Greene et al. 1992; Strzepek et al. 2012),
increasing ΦT acts to further decrease excitation pressure on the
RC in favor of thermal dissipation in the uncoupled antenna
complex. To examine this hypothesis, we plotted the relationship
between Fv/Fm and thermal dissipation from the full dataset
(Fig 7). A liner regression revealed a slope of −0.94 (r2 = 0.98); the
deviation from a −1.00 slope is attributed to ca. 6% dissipation by
fluorescence (Lin et al. 2016). The increased ΦT observed in the
WAP supports recent studies showing higher photoprotective
capacities in iron-limited phytoplankton assemblages (Alderkamp
et al. 2013; Schallenberg et al. 2020).

Moreover, the increase in uncoupled complexes combined
with exceptionally high ΦT offshore strongly agrees with the
proposed mechanism for efficient NPQ in diatoms. This mech-
anism attributes the rapid NPQ capacity to thermal dissipation
in the LHC, driven by xanthophyll pigment cycling and the
presence of Lhcx proteins (Lepetit et al. 2017; Buck et al. 2019).

These presumably cause a conformational change that dis-
tances the antenna complex from the RC, increasing the Fös-
ter resonance energy transfer distance, functionally mediating
the energetic uncoupling of the LHC and RC.

Lastly, we turn to evaluate possible light limitation in theWAP
surface waters, a second, potentially important bottom-up control
in this region (Moline 1998). Increased photoprotective activity
during the day across the WAP, inferred from ΦT (Table 2), sug-
gests that phytoplankton are exposed to saturating light intensi-

ties in the near-surface layer. Combined with the high ETRPSII
max

values measured during the day (Table 2), it is highly unlikely
that surface phytoplankton were light limited.

Although ETRPSII
max was initially assessed in regard to light

limitation, it was surprising and perhaps counterintuitive to
observe significantly higher (~ 120%) ETRPSII

max in the iron-

limited waters offshore (Table 2). A similar response in ETRPSII
max to

iron limitation has been reported in phytoplankton assem-
blages from the Northeast subarctic Pacific, where iron

Fig 5. A comparison of diel cycles in phytoplankton photophysiology over the coast, in blue, and continental slope, in red. (a) Locations in which the
data plotted were collected. (b) Fv/Fm, (c) fluorescence lifetime, and (d) σPSII.
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amendment experiments resulted in decreased ETRPSII
max

(Schuback et al. 2015). Similar results were seen in laboratory
experiments with the diatom Thalassiosira oceanica, the
haptophyte Chrysochromulina polylepis (Schuback et al. 2015),
and the cyanobacterium Synechococcus sp. (Blanco-Ameijeiras
et al. 2018). The iron-limited increase in ETRPSII

max is assumed to
be an additional effect of the iron economizing physiology. In
this manner, more excitons are funneled from the large
antenna to fewer functional RC, leading to increased ETR per
active PSII RC, each associated with a larger σPSII. While we
argue that our data provide little evidence for light limitation
in the surface waters we measured, and is supported by previ-
ous studies (Moline et al. 1996), the effect of the MLD on light
availability in the water column cannot be overlooked. Indeed,
along the coast, MLD (13.3�5.1) nearly reached the critical
depth (14.9�8.4 m), while along the slope, the MLD exceeded
by up to~30% the critical depth (30 �6 and 22.9�10.9 m,
respectively). Sverdrup’s critical depth hypothesis (Sverdrup 1953)
appears to imply that light limitation is particularly severe in the
water column along the continental slope. Why then, is there lit-
tle photophysiological evidence for light limitation in the surface
waters offshore? We speculate that our data agree with the

hypothesis that in Southern Ocean phytoplankton, the photo-
physiological response to iron limitation eliminates the antagonis-
tic co-limitation of iron and light (Strzepek et al. 2012).
Accordingly, the high capacity for light harvesting in the iron-
limited slope community alleviates light limitation. On the other
hand, in the iron replete coastal community, light limitation is
more probable and agrees with a recent study along the coast
(Carvalho et al. 2019). Still, during the day coastal phytoplankton
in the surface waters themselves experience light saturating condi-
tions. This may result from a long-term acclimation to limiting
light conditions in the water column, subjecting phytoplankton
to overexcitation at saturating light, likely only met at the surface.

Our analysis assumes a uniform taxonomic composition
across the WAP, which can potentially influence fluorescence
measurements (Suggett et al. 2009). This is a fairly safe
assumption as HNLC regions are anomalous in this respect,
yet with relatively consistent fluorescence signatures across
taxa (Suggett et al. 2009). This is further supported in South-
ern Ocean species (Strzepek et al. 2019), in particular diatoms,
the dominant species in the WAP (Schofield et al. 2017).

Data presented here provide strong evidence for a distinct
gradient in the degree of iron limitation across the WAP
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during the summer. Iron limitation was shown to be minimal
at the coast and severe further offshore. As we hypothesized,
combined measurements of ΦPSII and ΦF showed increased
fractions of uncoupled LHC-RC complexes as well as clear
increases in ΦT resulting from iron stress. The deep MLD across
the WAP may have caused light limitation in the water column.
Nonetheless, the clear acclimation to iron stress in the surface
waters along the slope effectively reduced potential light limita-
tion to a degree that phytoplankton were more susceptible to
light saturation. Our in-depth analysis of strictly biophysical
mechanisms in response to iron stress is highly supported by a
large number of studies, further strengthening our conclusions.

The WAPs case study, presented here, highlights the poten-
tial of our coupled ΦPSII and ΦF measurements as a rapid diag-
nostic tool for in situ assessments of iron limitation at high
spatial and temporal resolution. More critically, this diagnostic
tool provides a unique new avenue to assess in situ the role of
uncoupled complexes in natural assemblages, their effect on
satellite retrieved chlorophyll fluorescence and primary pro-
ductivity models.
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