
1.  Introduction
Phytoplankton are a fundamental part of the global carbon cycle accounting for nearly 50% of all photosyn-
thesis globally (Falkowski et al., 2008). Phytoplankton also serve as the base of the marine food web and 

Abstract  Ocean phytoplankton play a critical role in the global carbon cycle, contributing ∼50% of 
global photosynthesis. As planktonic organisms, phytoplankton encounter significant environmental 
variability as they are advected throughout the ocean. How this variability impacts phytoplankton growth 
rates and population dynamics remains unclear. Here, we systematically investigated the impact of 
different rates and magnitudes of sea surface temperature (SST) variability on phytoplankton community 
growth rates using surface drifter observations from the Southern Ocean (>30°S) and a phenotype-
based ecosystem model. Short-term SST variability (<7 days) had a minimal impact on phytoplankton 
community growth rates. Moderate SST changes of 3–4°C over 7–45 days produced a large time lag 
between the temperature change and the biological response. The impact of SST variability on community 
growth rates was nonlinear and a function of the rate and magnitude of change. Additionally, the 
nature of variability generated in a Lagrangian reference frame (following trajectories of surface water 
parcels) was larger than that within an Eulerian reference frame (fixed point), which initiated different 
phytoplankton responses between the two reference frames. Finally, we found that these dynamics were 
not captured by the Eppley growth model commonly used in global biogeochemical models and resulted 
in an overestimation of community growth rates, particularly in dynamic, strong frontal regions of the 
Southern Ocean. This work demonstrates that the timescale for environmental selection (community 
replacement) is a critical factor in determining community composition and takes a first step towards 
including the impact of variability and biological response times into biogeochemical models.

Plain Language Summary  Ocean phytoplankton are fundamental to the global carbon cycle. 
However, it remains unclear how environmental variability impacts phytoplankton growth, and thus, the 
global carbon cycle. Phytoplankton encounter environmental variability (e.g., sea surface temperature 
[SST] changes) as they are transported throughout the oceans by surface currents. Here, we quantified 
this variability (i.e., in a Lagrangian reference frame) using surface drifters and investigated the impact of 
this variability on phytoplankton community growth rates using an ecosystem model. We also compared 
the Lagrangian SST to the SST variability of a fixed point (e.g., a buoy) where ocean currents flow past 
(i.e., the Eulerian reference frame) using high-resolution satellite data. We found larger SST changes 
in the Lagrangian than in the Eulerian reference frame and discovered that this difference impacted 
phytoplankton community structure and growth rates. The impact of SST variability was not captured 
by the growth model that is typically used by global biogeochemical models. Our results provide an 
important extension on the classic principle that “everything is everywhere: but the environment selects” 
(Hutchinson, 1961, https://doi.org/10.1086/282171). Even when “everything is everywhere”, we show that 
the timescale for environmental selection (community replacement) is a critical factor in determining 
community composition.
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drive the ocean biological carbon pump, which acts to sequester carbon in the deep ocean. Understanding 
the impact of rising global temperatures on phytoplankton communities is therefore critical for predicting 
the influence of anthropogenic warming on ocean ecosystems and the global carbon cycle (Doney, 1999; 
Quéré et  al.,  2005). Currently, the parameterization of temperature-dependent growth rates is one of 
the main sources of uncertainty for future carbon cycle predictions among global biogeochemical mod-
els (Laufkötter et al., 2015). Due to their planktonic nature, phytoplankton will encounter anthropogenic 
warming in two ways: (a) as a general warming overlain on top of significant temperature variability due to 
advection; and (b) as changes in variability driven by large-scale shifts in ocean physics (Boyd et al., 2016; 
Fu et al., 2016; Lomas et al., 2010). Both of these processes will shift the type and magnitude of temper-
ature variability experienced by phytoplankton. Therefore, an improved understanding of the impact of 
temperature variability on phytoplankton growth rates is necessary in order to mechanistically incorporate 
phytoplankton growth dynamics into biogeochemical ecosystem models and to generate robust predictions 
of future changes.

Accurately assessing the type of temperature variability (rate and magnitude of change) encountered by 
phytoplankton in the ocean requires the correct reference frame. For phytoplankton, the correct reference 
frame is Lagrangian (along trajectory) rather than an Eulerian (fixed location) reference frame (Figure 1). 
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Figure 1.  Lagrangian versus Eulerian reference frames. Lagrangian reference frames follow the water parcel itself 
through time. The Eulerian reference frame refers to a fixed point in space (e.g., buoys or mooring stations) where 
advection of water parcels floating past the fixed point generates temporal variability. Panels (a–c) depict three different 
water masses (gray, blue, and green) as they each pass through the fixed Eulerian location (black dot) at times t1, t2, 
and t3. Panel (d) shows the temperature of each water mass through time (gray, blue, and green lines) as well as the 
temperature recorded at the Eulerian location (black line). Note in panel (d) that overall temperature variability in 
the Lagrangian reference frame (gray, blue, and green lines) is much greater than that in the Eulerian reference frame 
(black dots) though this may not always be the case.
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Modeling studies have demonstrated that both mean conditions and var-
iability (magnitude and rate of change) can differ markedly between the 
two reference frames (e.g., Doblin & van Sebille, 2016). Here we quantify 
the nature of the variability experienced by phytoplankton along Lagran-
gian trajectories using in situ data from the Southern Ocean—a region 
where global climate models lack a consensus on the impact of anthropo-
genic warming on phytoplankton growth (Bopp et al., 2013). This anal-
ysis allows us to constrain realistic rates and magnitudes of temperature 
changes experienced by Southern Ocean communities and to determine 
the impact of this variability on population growth rates.

The response of a phytoplankton community to changes in temperature 
is driven by individual phytoplankter dynamics. Growth rate as a func-
tion of temperature (reaction norm) for an individual phytoplankter is 
unimodal and tends to be asymmetric, often with a skewed tail towards 
lower temperatures (Boyd, 2019). Therefore, the growth response for an 
individual phytoplankter to a change in sea surface temperature (SST) 
depends on the starting SST relative to the optimum growth tempera-
ture (Topt, the temperature with the highest growth rate) and whether 
the SST change is increasing or decreasing (Figure 2). The rate of change 
in growth rate will depend on the acclimation rate (how fast the phy-
toplankter adjusts to the new temperature) and type of acclimation of 
the phytoplankter (Kremer et al., 2018). When SST changes are slower 
than the phytoplankter acclimation rate, the instantaneous growth rate 
will be equivalent to the acclimated growth rate (i.e., the phytoplankter 
is able to keep up with the rate of temperature change). When the rate 
of SST change is faster than the rate of acclimation, the instantaneous 
growth rates could be higher or lower than the acclimated growth rate, 
depending on the type of response, detrimental or beneficial, respectively 
(Kremer et al., 2018).

Laboratory based experiments on the impact of temperature variabil-
ity on phytoplankton growth have produced conflicting results. Some 
studies found an overall decrease in growth rates in a thermally varia-
ble environment relative to a stable environment (Bernhardt et al., 2018; 
Qu et  al.,  2019; Wang et  al.,  2019), while others found higher growth 
rates under variable conditions (Schaum et al., 2018), and some found 
that thermal variability did not impact community growth rates (Kling 
et al., 2019; Qu et al., 2019). The lack of consensus concerning the impact 
of variability on phytoplankton growth rates may be due to the differ-
ent magnitudes and rates of change used by the different studies, which 
ranged from ∼1.5°C/day (Schaum et  al.,  2018) to as high as 10°C/day 
(Bernhardt et al., 2018).

Understanding how an in situ population of phytoplankton will respond to temperature fluctuations is 
further complicated by phenotype and strain diversity. Multiple phenotypes can co-occur within a popu-
lation of phytoplankton each with different optimal temperatures (Topt, e.g., Webb et al., 2009). As such, 
the temperature response of a population is often modeled using an Eppley curve ( bTe ,  Eppley, 1972) 
where growth rate increases exponentially with temperature rather than as a unimodal relationship (Bopp 
et al., 2013). In essence, this assumes rapid phenotypic shifts within the community such that, as the tem-
perature changes, the community rapidly shifts its optimal growth temperature (Figure 3b). Previous work 
has demonstrated that representing phytoplankton growth using an Eppley curve results in an over-esti-
mation of phytoplankton community growth rates (Moisan et al., 2002). In addition, the advection of com-
munities across large temperature gradients, such as those along a western boundary current, can result in 
considerable differences between the optimum growth temperature (Topt) for the community and the in situ 
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Figure 2.  The impact of sea surface temperature (SST) variability on 
individual phenotype growth rate. (a) The temperature related growth 
response for a phenotype with a skewed shaped reaction norm. The 
values for the optimum growth temperature (Topt) and the corresponding 
maximum growth rate (μmax) are shown with dashed lines. (b) The 90-day 
SST profile of an example drifter trajectory (black) and the associated 
changes in phenotype growth rate (blue). The orange and red arrows in the 
top panel indicate the change in the phenotype growth rate associated with 
the corresponding changes in SST in the bottom panel.
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temperature (Hellweger et al., 2016). Here we build upon these studies and use a model to assess pheno-
typic shifts within a population in response to different types of temperature fluctuations and the resulting 
impact on population (or community) level growth rates.

In this study, we systematically assessed the effect of different magnitudes and rates of change of temper-
ature on phytoplankton community growth rates in the Southern Ocean (south of 30°S) using in situ SST 
data and a numerical ecosystem model. This southern hemisphere region encompasses some of the lowest 
(0.2°C) and highest (1.6–2.0°C) long-term mean SST variability globally (Deser et al., 2010; Maheshwari 
et al., 2013). We found that relatively small changes (<2°C over 7–90 days) did not substantially impact 
community growth rates and that moderate changes (3–4°C over 7–45 days) had the largest and longest 
lasting effect on community growth rates. These moderate changes resulted in a temporary decrease in com-
munity growth rate, that lasted up to 20 generations, as the community responded to the new temperature. 
The response of community growth rate to variable temperatures was non-linear and so could not easily 
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Figure 3.  (a) Map of all 90-day drifter trajectories (n = 2,190) colored by sea surface temperature (SST). Two example trajectories are highlighted in purple and 
magenta. (b) Reaction norms for each of the 319 phenotypes in the ecosystem model. The gray lines represent all the phenotype reaction norms and the green 
lines are example phenotypes to highlight the reaction norm shape. (c and d) Example trajectories and their resulting model outputs. The top panels show the 
SST (colors), the community growth rate estimated using the Eppley curve (dashed line), and the community growth rate from our phenotype-based model as 
calculated using Equation 5 (solid line). The bottom panel shows the biomass through time of each phenotype (gray lines). The blue line follows the phenotype 
with the highest initial biomass, the red dashed line follows the phenotype that has the highest biomass at the end of the 90 days, and the green line follows the 
phenotype that has a Topt equal to the mean SST of the trajectory.
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be accounted for with an adjustment to the Eppley curve. Finally, we found that the impact of temperature 
variability on phytoplankton community growth rates was present everywhere in Southern Ocean with the 
largest impact occurring in regions dominated by meso- and sub-mesoscale activity.

2.  Methods
The impact of SST variability on phytoplankton community growth rates was studied by combining SST 
observations, both in situ and from remote sensing products, and a phenotype-based ecosystem model. 
Here, we focused on the impact of mixed layer SST variability on phytoplankton community growth rates 
and therefore did not consider growth limitations due to other sources of variability such as nutrients, light, 
and mixed layer depth (e.g., Rohr et al., 2020a, 2020b). We tested the impact of co-limitation by temperature 
and nitrate and found that the results were generally consistent with the findings presented here (Text S6). 
Further work is needed to investigate the impact of multiple un-correlated environmental drivers.

2.1.  Southern Ocean Drifter Profiles

Lagrangian SST data were obtained from 422 Southern Ocean surface drifters from the Global Drifter Pro-
gram with 6-hourly SST data. Float data south of 30°S from July 1999 to April 2016 was downloaded from 
the Drifter Data Centre at the Atlantic Oceanographic and Meteorological Laboratory (accessed 11/2018). 
The lifetime of the drifters ranged from 91 days to 5.8 years with a median duration of 521 days. Each drifter 
was segmented into 90-day trajectories to provide consistency in the data set. We used only segments that 
had less than 10% of missing data. This resulted in 2,190 90-day trajectories (Figure 3a).

To estimate the magnitude of Lagrangian variability in our study region, we calculated the range of SSTs 
(ΔSSTmax) and the time (∆tmax) over which the temperature change occurred using moving windows of 
1–90 days (in 1-day increments). We then assessed the distribution of variability across different window 
sizes by aggregating the data into 1°C bins for ΔSSTmax and 1 day ∆tmax bins. For example, a 2.4°C change 
that occurred over 14 days was recorded in the 2–3°C and 14-day bin. To investigate the potential impact 
of small-scale noise, we also created smoothed splines of each of the 90-day SST profiles using a cubic 
smoothing spline (csaps in Matlab with a smoothing parameter of 0.00001). The splines filter out 25% of the 
variability on a 1-day timescale up to 95% at the 90-day window (Figure S1). We then repeated the ΔSSTmax 
and ∆tmax analysis on the spline data.

2.2.  Remote Sensing SST

To compare the SST variability in the Lagrangian reference frame to the variability that would be captured in 
the Eulerian reference frame, we used high-resolution (0.01° horizontal resolution and 1-day temporal reso-
lution) satellite SST data from GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis 
(v4.1) (JPL MUR MEaSUREs Project, 2015; accessed October 2018). This data set spanned 2003–2014 which 
overlaps with 71% of our 90-day drifter segments. For each 90-day drifter segment between 2003 and 2014, 
we extracted 90 days of satellite SST data for the latitude and longitude of the final location of the drifter, 
where the 90 days corresponded to the dates of the drifter segment. We then also extracted the satellite SST 
along the drifter trajectories to provide a direct comparison between the Eulerian and Lagrangian reference 
frames in terms of the temporal and spatial resolution of the datasets. We performed the same ΔSSTmax and 
∆tmax variability analyses for the satellite data as the surface drifter trajectories (described in Section 2.1).

2.3.  Idealized SST Trajectories

We complemented the observed SST trajectories with idealized SST trajectories to mechanistically un-
derstand the impact of the rate and magnitude of SST change on community growth rates. Specifically, a 
suite of trajectories (N = 64) was generated with both increasing and decreasing SST trends ranging from 
ΔSST = 2° to ΔSST = 9°C (in increments of 1°C) over 7, 21, 45, and 90 days. These ΔSST values and dura-
tions were chosen based on our Lagrangian variability analysis. To minimize initialization bias, SST was 
held constant for the first 30 days before increasing/decreasing. After the SST change, the SST was again 
held constant until the 200th day. The final temperature for all idealized trajectories was 15°C. The impact 
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of the final temperature on the model results was analyzed with a set of sensitivity experiments. The final 
SST had no significant impact on the results when the results were reported in terms of the doubling time 
(generation), rather than absolute days as this normalized the effect of higher growth rates at warmer tem-
peratures (Text S1). Generation time was calculated as ln 2 / SS, where SS is the stabilized community 
growth rate. With a final SST of 15°C, the generation time was ∼1.37 days.

2.4.  Phenotype-Based Ecosystem Model

To estimate the impact of variable temperature on phytoplankton community growth rates, we used a phe-
notype-based ecosystem model. The model consisted of 319 phytoplankton phenotypes that were identical 
in all aspects (i.e., model parameters) other than the optimal growth temperature (Topt). Temperature de-
pendent growth rate (µ, day−1) was defined as a function of T (°C) (Thomas et al., 2012):

 
          

2
optµ 1

/ 2
bT T T

T ae
w

� (1)

where Topt was the optimal growth temperature. The value of b controlled the shape of the reaction norm, a 
(day−1) scaled the reaction norm, and w (°C) defined the width of the reaction norm (the difference between 
the maximum [Tmax] and minimum [Tmin] growth temperatures). We ran the model with two sets of reaction 
norms: a symmetrical, or broad, curve where b = 0 (°C−1) and a skewed reaction norm where b = 0.3 (°C−1). 
Both reaction norms had a width of 14°C (w = 20°C), consistent with observed reaction norms for many 
polar species (Boyd, 2019). Sensitivity tests were performed with reaction norm widths of 10.5°C (w = 15°C) 
and 20.5°C (w = 29°C) (Text S2). The results from these sensitivity tests did not differ substantially from the 
simulations with a reaction norm width of 14°C.

The parameter a scaled the reaction norms at Topt to the Eppley curve (Eppley,  1972) where maximum 
growth rates ranged between 0.28 day−1 at −1.8°C to 1.0 day−1 at 30°C, consistent with experimental data 
(Boyd, 2019). Specifically, ai was defined for each phenotype i as:


0.0405 opt0.2963 T

ia e� (2)

This resulted in an increase of ∼1.5x in growth rate for every 10 degrees (i.e., a Q10 relationship of 1.5, see 
Discussion). We generated 319 phenotype curves for both the broad and skewed reaction norms with Topt 
ranging from −1.8°C to 30°C increasing by 0.1°C (Figure 3b).

The biomass of each phytoplankton phenotype Pi was calculated at each time-step as the integral of:

     2i
i i i

dP T P m T P
dt

� (3)

where µi(T) was the temperature-dependent growth rate for phenotype i from Equation 1. m(T) was the 
temperature-dependent quadratic mortality rate (m3 mmol C−1 day −1) where:

   0.35m T a� (4)

Here we used the same temperature dependent Eppley curve (Equation 2) to scale mortality with temperature 
using SST instead of Topt where a = 1 day−1 for SST = 30°C. We imposed a minimum biomass (0.001 mmol C 
m−3) so that no phenotype went locally extinct, akin to the “everything is everywhere” principle (Hutchin-
son, 1961). Sensitivity tests were performed with the minimum biomass set to 0.0001 mmol C m−3. The 
minimum biomass threshold did not affect the overall patterns but did increase both the magnitude of the 
difference from the community growth rates obtained using the Eppley growth model and the time to ac-
climation (memory length, Section 3.2) for both broad and skewed reaction norms (Text S3). Imposing this 
minimum biomass purposefully introduced mass into the system which was accounted for by adjusting the 
biomass of each phenotype to keep the total community biomass at the concentration it would have been 
without the minimum biomass criteria. Specifically, the total change in biomass without the minimum 
biomass phenotypes was calculated using the biomass weighted community growth rate (λ) in place of µ(T) 
in Equation 3, where λ was defined as:
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   ,
,µ i t

i t
P
P

� (5)

where, µi,t was the growth rate of the ith phenotype at time t for all phenotypes with biomass greater than 
the minimum, Pi,t was the biomass of the ith phenotype whose biomass was greater than the minimum at 
time t, P was the sum of the biomass of all phenotypes with biomass greater than the minimum at time t.

Several different models for mortality and grazing were tested including linear mortality, constant mortal-
ity, a dynamic zooplankton population, and a simple ecosystem model with constant grazing pressure (see 
Text S4). All model versions resulted in qualitatively similar results which demonstrated that the community 
dynamics were not particularly sensitive to the top-down control formulation in the model (Text S4). Here, 
we present the quadratic mortality as it was the simplest model with smooth (non-oscillatory) solutions.

The ecosystem model was forced with each of the 2,190 drifter segments (see Figure 3c & 3d for examples), 
the corresponding smoothed splines, the idealized SST trajectories, and the satellite-derived SSTs. The ini-
tial biomass of phenotypes with a Topt within ±2.5°C of the starting SST value were randomized to simulate 
previously accumulated biomass with phenotypes outside this range set to the minimum biomass. Simula-
tions that used idealized SST trajectories were performed 100 times with different initial biomass conditions 
to account for stochasticity in the model initialization.

2.5.  Acclimation Rate

To test the impact of different acclimation timescales, we performed sensitivity tests in which we incorpo-
rated a linear acclimation rate for all phenotypes in the model. Specifically, we incorporated a timescale 
over which an individual phenotype could change its growth rate in response to a temperature change. For 
example, if SST rapidly changed from 15°C to 16°C, a phenotype with an acclimation timescale of 0.2°C 
day−1 would move from the growth rate at 15°C to the growth rate at 15.2°C in one day. If the SST then held 
constant at 16°C, the phenotype would acclimate by the end of the fifth day. We tested acclimation rates 
ranging from 0.2°C day−1 to 0.6°C day−1 in increments of 0.1°C day−1 which are consistent with acclimation 
rates determined for the Southern Ocean diatom Fragilariopsis cylindrus (see Table S2). The model with 
acclimation was forced with the idealized SST trajectories for a ∆SST = 2°C in 7 days (0.29°C day−1), 3°C in 
7 days (0.43°C day−1), 4°C in 7 days (0.57°C day−1) and 5°C in 21 days (0.24°C day−1). These intervals corre-
sponded to the magnitudes and rates of change most commonly experienced by the drifter trajectories (see 
Section 3.1) for which the rate of change was greater than 0.2°C day−1.

3.  Results
3.1.  SST Variability

We characterized in situ SST variability experienced by phytoplankton (i.e., in a Lagrangian reference frame) 
using the surface drifter SST data. Seasonal dynamics were not filtered out as they were important sources 
of SST variability encountered by phytoplankton. While the surface drifters may have been subjected to 
some physical movements that phytoplankton do not encounter (e.g., lateral transfer across fronts due to 
wind rather than subduction and mixing), they provided the best in situ data set for studying Lagrangian 
variability in surface temperature. However, to minimize the impact of unrealistic fluctuations in the drifter 
data set, we limited our subsequent analyses to the most frequently measured scales of variability within 
the drifter record. The average ∆SSTmax values ranged from 0.9°C ± 0.7°C (1σ) for the 7-day window, which 
corresponded to 0.13°C/day change over the 7 days, to 4.2°C ± 2.0°C (1σ) for the 90-day window or 0.05°C/
day change (Figure S12, Table S1). The latter was consistent with the expected seasonal SST cycle for the 
Southern Ocean (Reynolds & Smith, 1994). The SST variability of the drifters (standard deviation over the 
window) was highly correlated with ∆SSTmax (R2 = 0.92, p < 0.01, Figure S13).

Using the ΔSSTmax analysis, we were able to quantify the most common types of variability encountered in 
situ in terms of both the magnitude of change and the rate of change (Figure 4). Due to the difference in the 
number of data points generated by the moving windows, we assessed the frequency of each ∆SSTmax within 
a given window length (y-axis) such that the highest value across the row indicates the most likely ∆SSTmax 
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for that window length. The ∆SSTmax bins sum to 100% across the row. 
Overall, there is a trend of increasing ∆SSTmax with increasing window 
length, as expected. We selected four representative window lengths, 7, 
21, 45, and 90 days, as illustrative examples though the results are not 
dependent on these selections. A 7-day window was most likely to have 
a ΔSSTmax of 2°C or less (82%), and ∼3% of the trajectories recorded a 
ΔSSTmax of 4°C. Over a 21-day window, most trajectories had a ΔSSTmax 
of 2–3°C (combined accounting for 86% of data) and ∼10% of the trajec-
tories had a ΔSSTmax of 4–5°C. ΔSSTmax reached as high as 9°C for the 
90-day windows but accounted for only 2.5% of the data in that window.

A comparison of Lagrangian and Eulerian reference frames demonstrated 
that, while the overall patterns of variability were similar, the Lagrangian 
reference frame was more likely to capture large ΔSSTmax (Figure S14). 
This was true for both the drifter and satellite derived Lagrangian tra-
jectories when compared to the satellite SST in the Eulerian reference 
frame. For example, within a time-frame of 21–30 days, a ΔSSTmax greater 
than 3°C was more likely to occur in both the drifter and satellite derived 
Lagrangian (17%) trajectories than in the Eulerian (11%). Similarly, for 
the 51-day to 60-day windows, ΔSSTmax of 2–4°C were common in both 
reference frames, but changes >4°C were more common in the satellite 
derived Lagrangian trajectories (24%) and the drifter Lagrangian trajecto-
ries (23%) than the satellite Eulerian data (16%). This same pattern was 
consistently observed for all windows from 1 to 90 days. The impact of 
these differences in SST changes on phytoplankton community growth 
rates are discussed below (see Sections 3.2 and 3.3).

For most of the SST data recorded by the drifters, the rate of SST change was slower than the expected phy-
toplankton acclimation rates. Acclimation rates for the Southern Ocean diatom F. cylindrus are on average 
0.3°C/day (Table S2). For the drifter trajectories, only 8% of the 1-day bins (n = 197,100 days) recorded rates 
of SST change greater than 0.3°C/day and less than 2% of the daily bins recorded rates of change greater 
than 0.6°C/day (Figure S15). Because SST rates of change were typically slower than the phytoplankton 
acclimation rate, we hypothesize that, for the majority of the Southern Ocean, the rate of acclimation will 
not play a major role in the community response. Therefore, to simplify model dynamics, we ran our model 
with rapid acclimation such that each phenotype responded directly to SST changes. See Section 4.1 for 
discussion about situations in which acclimation may be important.

3.2.  Impact of Variable SSTs on Community Growth Rates

We used idealized simulations to develop a mechanistic understanding of how variability impacts com-
munity growth rates. For small, gradual SST changes of less than 2–3°C in 45–90 days (0.02–0.07°C/day), 
the community growth rates changed linearly with the SST changes during the period of SST transition 
and then stabilized once SST stopped changing. When the rate of change was slow, the distribution of 
phenotypes within the community changed at the same rate as the SST such that the Topt of the most 
dominate phenotype closely matched the SST. As a result, the temporal response in the community growth 
rate from the phenotype model was similar to the growth rate from a null model using an Eppley curve 
parameterization.

For SST rates of change larger than 2–3°C in 45–90 days (0.02–0.07°C/day), community growth rates ini-
tially increased or decreased depending on the sign of the SST change, but then began to decrease rapidly 
(see Figure S16 for example). Once SSTs stabilized at the final value, community growth rates increased and 
eventually stabilized. Out of the environmentally relevant rates of SST change, 4°C in 7 days (0.57°C/day) 
resulted in the largest change 70% ± 1% (1σ) during the low growth period (Figure 5a). While the absolute 
percent change in growth rate was sensitive to model formulation and parameter values, the qualitative 
relationships presented here were robust (Figure S8).
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Figure 4.  Sea surface temperature (SST) variability analysis. The 
frequency of ΔSSTmax changes from the drifter segments over different 
window lengths are shown. Data are presented as total percent of data that 
fall within that window length such that each row sums to 100%. There is 
a general pattern of increasing magnitudes of ∆SSTmax over longer window 
lengths.
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Figure 5.  Simulated response of a phytoplankton community with skewed shaped reaction norm to increasing ∆SST 
(see supporting information for decreasing ∆SST conditions and broad reaction norm results). Panel (a) plots the 
decline in community growth rate in the phenotype model that results from the sea surface temperature (SST) moving 
out of the thermal niche of the original population (see Methods and Figure S16). Data that are grayed out represent 
ΔSST and window length combinations that were not supported by the results from Figure 4. Panel (b) shows the 
percent difference between the Eppley growth model approximation and the phenotype modeled community growth 
rates at the point where SST stabilizes (see Figure S16 for example). Panel (c) plots the memory effect length associated 
with SST changes in the idealized simulations. This represents the time it takes for the community growth rate to be 
within 5% of the steady state growth rate at the final SST from the first time-step that SST is constant (see Figure S16 for 
example).
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The impact of temperature variability on community growth rates is a function of both changes in the 
growth rates of individual phenotypes (i.e., shifts along a reaction norm) and shifts in the community com-
position (i.e., abundance of different phenotypes). The low growth phase after a shift in SST (either increas-
ing or decreasing) was caused by the SSTs extending beyond the thermal optimum of the initial community 
such that the bulk of the biomass was growing slowly. During this period, the individual phenotypes with 
elevated growth rates only made up a small fraction of the community and so did not contribute signifi-
cantly to the community growth rate. The community growth rates then rebounded as these high growth 
phenotypes increased their biomass and eventually became the dominate biomass group. Faster rates of 
SST change moved the community out of the thermal optimum of the initial community more quickly than 
smaller rates of change, and therefore larger and faster ∆SSTs resulted in greater decreases in community 
growth rates. However, the high growth individuals were able to dominate the community more quickly 
due to the high loss rates for the slow (or no) growth individuals and so the community growth rates re-
bounded more quickly for rapid relative to moderate rates of SST change. For rapid SST changes, the rate 
and type of acclimation response could potentially play a role in the shifts in community growth rates de-
pending on the nature of the plastic response (see Discussion).

An Eppley curve was unable to capture the impact of variability in SST on community growth rates due 
to the non-linear phenotype dynamics. Community growth rates derived directly using the Eppley curve 
model were always larger than those simulated by the phenotype model, consistent with previous work 
(Bernhardt et al., 2018; Moisan et al., 2002). The difference between the phenotype modeled growth rates 
and the Eppley curve estimates varied as a function of SST variability (Figures 5b and S18). As the ∆SST 
increased over a given window length, so did the difference between the phenotype model and the Eppley 
curve estimate. The largest departures occurred for ΔSSTs of 4°C and 5°C over 7 and 21 days, respectively, 
with up to 80% lower simulated community growth rates for the phenotype model. Generally, larger ΔSSTs 
and faster rates of change (changes occurring over a few generations) resulted in larger differences between 
the models.

Although we focus on the impact of temperature-limitation on phytoplankton growth in this study, nu-
trient limitation also plays an important role in co-limiting phytoplankton growth in the Southern Ocean 
(Cochlan, 2008). While a full analysis of the impact of fluctuating co-limitation is beyond the scope of this 
study, we conducted a set of model simulations to test the impact of temperature and nitrate limitation on 
the observed dynamics (Text S6). Given the non-linear formulation of nutrient limitation and the relatively 
low half-saturation values for the uptake of nitrate, for the majority of the Southern Ocean the model results 
with co-limitation are similar to those from simulations with temperature limitation only. This is because 
the variation in nutrient limitation was small compared to the variation in temperature limitation (at the 
level of individual phenotypes).

3.3.  Memory Effect

The timescales of the biological response to temperature fluctuations varied as a function of the overall 
magnitude and direction (increasing or decreasing) of SST change, the duration of the SST change, and 
shape of the reaction norm (broad vs. skewed) for the individuals within the population. Here we define 
the timescale of biological response as the “memory effect”—the time for the community growth rate to 
stabilize (±5% of the stable value). Here we present the memory effect in terms of generations calculated 
using the final stable growth rate. This allowed us to understand the relative impact of temperature change 
on phytoplankton using a common currency such that our results are not growth rate dependent.

The most common ∆SST changes (Figure 4) were associated with the longest memory effects (Figures 5b 
and S19). Nearly all of the environmentally relevant ∆SST values were sufficient to create a memory effect of 
longer than two generations. Moderate changes of 3–4°C over 7–45 days or 4–28 generations (0.07–0.57°C/
day) resulted in the longest memory effects of up to up to 22 generations for both reaction norm shapes (Fig-
ures 5c and S19). This biological response time is nearly 5 times longer than the duration of the temperature 
change. Larger SST changes (5–6°C) that occurred over 45 or 90 days or 28–57 generations (0.06–0.13°C/
day) tended to have shorter memory effects (∼8–19 generations) than moderate changes that occurred over 
the same time frame, but this difference was not statistically significant. Longer memory effects for mod-
erate SST changes resulted from dominant phenotypes in the previously acclimated community being able 
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to grow in the new environment, albeit at a reduced rate. This increased 
the time required for the phenotypes optimally suited for the new envi-
ronment to dominate the community, which resulted in larger memory 
effects.

The sign of the SST change also impacted the response time of the com-
munity. Decreasing ΔSSTs had longer memory effects by an average of 7 
generations compared to increasing ΔSSTs (t-test, 95% CI) for the skewed 
shaped reaction norms. The longer memory effect was due to the long 
tail on the decreasing side of the reaction norm, which allowed the phe-
notypes in the initial community to grow during decreasing SST condi-
tions (Figure S19). For reaction norms that were symmetrical about the 
optimum growth temperature, the direction of ΔSST did not matter, and 
the memory lengths were not statistically different for increasing and de-
creasing ΔSSTs (t-test, 95% CI) (Figure S19).

3.4.  Southern Ocean Drifter Trajectories

The idealized simulations allowed for a mechanistic characterization 
of how phytoplankton community growth rates vary as a function of 
rate and magnitude of SST change (Sections 3.2 & 3.3). However, in the 
ocean, SST change is much more complicated as phytoplankton are ex-
posed to a large variety of rates and durations of SST changes. We used 
Southern Ocean drifter trajectories to investigate the impact of in situ SST 
variability on community growth rates. When phenotypic diversity was 
considered (phenotype model), variable SST resulted in lower average 
community growth rates compared to the Eppley curve approximation 

(Figure 6). Though nutrient and light limitation were not explicitly included in the phenotype model, the 
simulated growth rates were consistent with in situ (Buitenhuis et al., 2013), remote-sensed based (Arteaga 
et al., 2020), and incubation derived growth rates (Boyd, 2019; Boyd et al., 2013), and therefore reasonably 
captured growth dynamics. As drifter SST variability increased, so did the difference between the phenotype 
model and the Eppley curve approximation, consistent with the idealized simulation results. The mean per-
cent difference between the phenotype model and the Eppley curve approximation over the 90-day trajecto-
ries ranged between −142% and −11.5% with a mean of −25.8% (±16.6% 1σ) for the skewed reaction norms. 
A similar pattern was observed for the broad shaped reaction norms, but the magnitude of the difference 
was smaller and ranged from −53.2% to just −1.3% different with a mean of −6.1% (±5% 1σ) (Figure S20). 
Trajectories with higher mean SSTs were affected less by SST variability than trajectories with lower SSTs 
because faster growth rates at higher temperatures allowed quicker responses to SST changes.

To isolate the impact that short-term variability may have on community growth rates relative to longer-
term shifts, we compared the 90-day mean biomass-weighted community growth rate of the drifter tra-
jectories to the smoothed splines derived from the trajectories. Removing short-term variability had no 
significant impact on community growth rates (t-test, 95% CI; Figure S21).

4.  Discussion
4.1.  Impact of Acclimation

As ocean surface temperature shifts, two processes occur simultaneously: (a) individual phytoplankton phe-
notypes respond to the change in temperature (acclimation), and (b) phenotype abundance within the com-
munity shifts towards individuals with higher maximum growth rates at the new temperature. In this study, 
we investigated the impact of these individual-level dynamics on community-level growth. We demonstrate 
that shifts in phenotype abundance are the primary drivers of community growth rate dynamics. This is in 
large part due to in situ rates of SST changes being slower than the rates of individual acclimation (based 
on laboratory estimates), even for the dynamic Southern Ocean. When individual acclimation rates were 
slower than the rate of SST change, we observed a delay in the low growth phase and a smaller magnitude 
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Figure 6.  Impact of sea surface temperature (SST) variability on 
community growth rate. The average percent difference in community 
growth rate between the phenotype model and the Eppley growth model 
from the 90-day drifter segments are plotted against the standard deviation 
(1σ) of the drifter SST. Each segment is colored by the mean SST. Results 
from the idealized trajectories are shown as black diamonds with filled 
diamonds denoting increasing SST trajectories and open diamonds 
denoting decreasing SSTs. Pink triangles represent the two example 
trajectories from Figure 3. Results shown here are for skewed shaped 
reaction norms, see Figure S20 for results for the broad shaped reaction 
norms.
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decrease in community growth rates (Figure S22). The memory effect in-
creased linearly as individual acclimation rates decreased (longer accli-
mation time) (Figures 7 and S23).

The representation of phenotype acclimation in the model was a simplis-
tic representation of phenotypic plasticity (see Methods). In reality, plastic 
responses are much more complex and nonlinear and most likely vary 
among species (Kremer et al., 2018). Additional work is needed to better 
constrain both the range of acclimation timescales and the mechanisms 
of phenotypic plasticity. However, our results suggest that these dynam-
ics will only become important under rapid temperature changes which 
are infrequent in the ocean.

4.2.  Implications for In-Situ Community Composition

Our findings support the important role of thermal history in shaping 
the response of phytoplankton communities to changes in temperature. 
We have shown that SST variability can lower community growth rates 
for tens of generations following SST perturbation. This indicates that, 
for many regions of the ocean, the phytoplankton community will not be 
fully acclimated to local conditions as a result of the mismatch between 
timescales of physical variability and biological response. This mismatch 

in timescales will be a function of the rate and magnitude of SST variability that phytoplankton in the water 
mass were previously exposed to and may be reflected in physiological properties such as optimum growth 
temperature or overall community growth rate.

Our results also provide an important extension on the classic principle that “everything is everywhere: 
but the environment selects” (Hutchinson, 1961). Even when “everything is everywhere”, we show that 
the timescale for environmental selection (community replacement) is a critical factor in determining 
community composition. Specifically, we hypothesize that even when the “optimal” organism is present 
in an environment, environmental variability generated by local physics, lateral advection, and seasonal 

trends can delay or prevent that organism from dominating the commu-
nity. This hypothesis is supported by previous modeling work that has 
shown a time-lag on the order of weeks to a month in the phytoplankton 
community growth response to SST changes due to lateral advection and 
seasonal trends (Hellweger et al., 2016; Moisan, et al., 2002). Here, we 
have quantified the relationship between varying rates of SST variabili-
ty and the timescale required for community replacement to impact the 
community composition.

We tested the impact of Eulerian versus Lagrangian variability on com-
munity growth rates and demonstrated significant differences for loca-
tions in which SST variability differed in the two reference frames. Spe-
cifically, while the final SST of the drifter segments and satellite data were 
not statistically different (t-test, 95% CI, Figure S24), differences in the 
nature of variability in the preceeding 90 days resulted in a significant 
difference between the final SST and the Topt of the most abundant phe-
notype (t-test, 95% CI, Figures 8 and S25). The magnitude of the offset 
between SST and Topt depended on the timing of SST changes through-
out the 90-day profiles. When SST changes were slow, the offset between 
SST and the Topt of the most abundant phenotype were negligible (Fig-
ure S26 for an example). Large SST changes that occurred early in the 
90-day segment allowed sufficient time for the community to respond 
(e.g., Figure S26). When SST changes occurred later in the 90-days, the 
community did not have sufficient time to respond which caused a larg-
er offset between the SST at day 90 and the Topt of the community (e.g., 
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Figure 7.  The impact of acclimation on the number of generations 
for which the effect of a temperature change persists (memory length). 
Acclimation rates that were slower than the rate of sea surface temperature 
(SST) change resulted in longer memory lengths than for simulations in 
which acclimation rate was equal to or faster than the SST rate of change.

Figure 8.  The impact of Lagrangian and Eulerian variability on 
community composition. Here we plot the difference between the Topt of 
the most abundant phenotype at the end of each 90-day trajectory and the 
final sea surface temperature (SST) for the drifter trajectory (x-axis) and 
the satellite data (y-axis). The final SSTs for the drifter and satellite data 
are not statistically different (t-test, 95% CI). Therefore, deviations from the 
1:1 line demonstrate the impact of a Lagrangian versus Eulerian reference 
frame on community composition.
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Figure S27). Different phenotype distributions for the Eulerian versus Lagrangian reference frames is con-
sistent with previous results that showed advection of phytoplankton communities was a key process in 
shaping phytoplankton diversity (Barton et al., 2010; Clayton et al., 2013; Lévy et al., 2014).

The shape of the reaction norm impacts the community response to temperature variability and phenotype 
competitive advantage. Under decreasing temperatures, a phenotype with a skewed reaction norm (Topt 
closer to Tmax than Tmin) has a competitive advantage over a phenotype with a broad reaction norm (Topt at 
the center of Tmax and Tmin), given the same reaction norm width and Topt. A skewed reaction norm pro-
vides a larger range of temperatures <Topt under which the phenotype can grow. Therefore, organisms with 
skewed reaction norms should be adapted to have Topt values close to maximum encountered temperatures 
not only due to the rapid decline in growth rates for temperatures greater than Topt but also due to the com-
petitive advantage under temperatures less than Topt. Conversely, broad reaction norms are favored when 
temperatures are warming, as expected, or when temperatures are more variable. In a highly variable region 
such as the Southern Ocean, there should be selective pressure for either broad reaction norms with large 
growth ranges beyond Topt (Moisan et al., 2002) or skewed reaction norms where Topt is higher than mean 
SSTs (Thomas et al., 2012).

4.3.  Implications for Simulating Community Growth Rates in Global Biogeochemical Models

A form of the Eppley curve, Q10 temperature-growth response ( 



0

10
0 10

T T

Q ), is widely used in global bio-
geochemical models (Bopp et al., 2013), where typical model Q10 values range between 1.5 and 2 (Sherman 
et al., 2016). The premise behind employing a Q10 growth equation is that each modeled functional group 
encompasses many species or strains and so the Eppley curve may be a reasonable representation of the 
group dynamics. However, as we have demonstrated, community growth rates (or functional group growth 
rates in the model framework) will depend on the underlying phenotype dynamics, which are a function 
of the rate, magnitude, and direction of temperature change and the shape of the species/strains' thermal 
response curve. As a result, the Q10 temperature-growth response not only underestimates temperature-lim-
itation on community growth rates (i.e., overestimates growth rates) but does so as a function of SST, SST 
variability, and reaction norm shape. Our work indicates that adjusting the Q10 relationship to use a lower 
exponent as previously suggested (Sherman et al., 2016) will only partially capture realistic dynamics. Be-
cause phytoplankton play a key role in sequestering carbon dioxide from the Earth's atmosphere, by overes-
timating phytoplankton growth rates, and thus overestimating carbon uptake, biogeochemical models may 
be underestimating the extent of future anthropogenic warming.

To predict changes in phytoplankton community growth rates robustly, models must also consider the im-
pact of different types of SST variability and the appropriate reference frame for this variability. Specifically, 
we have shown that SST variability can differ markedly between the Eulerian reference frame and the La-
grangian reference frame (Figure S14). While the spatial patterns of SST variability in the Southern Ocean 
were similar between Eulerian and Lagrangian reference frames (Figures 9a–9c), the Eulerian reference 
frame exhibited substantially less variability. Consequentially, the offset between Eppley curve approxima-
tion and the phenotype model was substantially less for the Eulerian relative to the Lagrangian reference 
frame (Figures 9d–9f). This pattern was consistent for both the drifter Lagrangian trajectories and the sat-
ellite derived trajectories.

Models such as DARWIN (Follows et al., 2007) resolve phenotypes with a range of thermal reaction norms 
and so will capture the community growth rate dynamics presented here. However, additional work is need-
ed to compare the variability encountered by functional group phenotypes in large-scale models integrated 
in an Eulerian framework to true Lagrangian variability.

Improving the parameterized temperature-growth relationship is particularly important in the Southern 
Ocean given the uncertainty of future primary productivity in this ocean basin (Bopp et al., 2013). We used 
our model results to identify key regions within the Southern Ocean that might be most strongly impacted 
by temperature variability. Three particular regions stand out that exhibited the most SST variability and 
had the largest relative deviations from the Eppley curve (Q10) approximation: the Malvinas-Brazil conflu-
ence zone; the Agulhas Retroflection region; and downstream from these two along the Subtropical Front 

ZAISS ET AL.

10.1029/2020GB006880

13 of 16



Global Biogeochemical Cycles

near ∼45°S, 60°E (Figures 9a–9c). All three regions were previously identified as highly dynamic, strong 
frontal regions (Artana et al., 2019; Beal et al., 2015; Graham & Boer, 2013) and shown to be important hot-
spots for phytoplankton diversity (Barton et al., 2010; Clayton et al., 2013; d'Ovidio et al., 2010; Soccodato 
et al., 2016). It is possible that in these highly dynamic frontal regions the floats were subjected to physical 
movements across the fronts that was previously thought to elude phytoplankton movements. However, re-
cent field and modeling studies have shown that cross-front transfer and diapycnal mixing can occur due to 
the fine-scale physics associated with these strong fronts (Clayton et al., 2017; Mahadevan, 2016; Wenegrat 
et al., 2020). Our results also showed that large SST changes were not required for temperature variations to 
have a lasting impact on community growth rates. Regions of the Southern Ocean with moderate (1–2°C, 
1σ) SST variability also recorded equally large differences in community growth rate, often at least 30% 
smaller than Eppley curve approximations and up to 80% smaller than Eppley curve approximations.

5.  Conclusions
We utilized idealized SST simulations and SST data from ocean surface drifters to show that synoptic SST 
variability on timescales of a few days to a few weeks decreases phytoplankton community growth rates, 
while higher frequency variability has little impact. The time taken for the community growth rate to reflect 
the new environment was dependent upon the rate and magnitude of temperature change, the direction 
of change, and the shape of the thermal response curve. The largest memory effects resulted from mod-
erate changes in SST that occurred over 1–3 weeks. This impact of SST variability can cause a large offset 
between a phenotype-based temperature-dependent community growth rate and an Eppley curve-based 
approximation and suggests that phytoplankton communities sampled in situ may often not be adjusted to 
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Figure 9.  (a–c) Distribution of sea surface temperature (SST) variability and (d–f) the deviation in community growth rate from the Eppley growth model over 
the Southern Ocean (>30°S). Only those drifters which overlap in space and time with the satellite data are shown. For full results, see Figure S29. Three key 
regions of high SST variability stand out: Malvinas-Brazil confluence zone, the Agulhas Retroflection, and the Subtropical front. These regions have enhanced 
SST variability in all datasets but higher variability in the Lagrangian trajectories. These high variability regions correspond to large differences between the 
phenotype model growth rates and the Eppley approximation of growth, a pattern consistent across all three sets of simulations.
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local conditions. Given the highly variable nature of the ocean and importance of environmental variability 
for phytoplankton physiology, it is critical to consider the appropriate reference frame and the magnitude 
and duration of variability when studying phytoplankton dynamics. Here we demonstrate that variability 
captured in the Lagrangian reference frame (by drifters) was, in many instances, different from variability in 
the Eulerian frame and that this had significant impacts for estimating phytoplankton growth rates. These 
findings have potentially far-reaching implications for how temperature-dependent phytoplankton growth 
is represented in global biogeochemical models.

Data Availability Statement
Drifter data used here can be obtained from the Drifter Data Centre at the Atlantic Oceanographic and Me-
teorological Laboratory (https://www.aoml.noaa.gov/phod/gdp/) and satellite data are available from the 
GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (https://podaac.jpl.nasa.gov/
dataset/MUR-JPL-L4-GLOB-v4.1).
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