Palmer LTER Site Review Introduction to the Palmer LTER Ray Smith, UCSB

Palmer LTER PI's Ray Smith, UCSB Karen Baker, UCSD Bill Fraser, Montana State U David Karl, U Hawaii Doug Martinson, LDEO Langdon Quetin, UCSB Robin Ross, UCSB Maria Vernet, UCSD

Palmer LTER Palmer LTER: Antarctic Marine Ecosystem: An Ice-Dominated System

- Outline
 - Long-term ecological research
 - Antarctic Marine Ecosystem
 - o brief overview
 - o conceptual diagram of trophic structure
 - o seasonal time line
 - Palmer LTER (PAL) Central Hypotheses
 - o seasonal linkages & sea ice
 - o new perspectives
 - Paleohistory of Western Antarctic Peninsula (WAP)
 - Ecological response to climate variability
 - Satellite estimation of primary productivity
 - Summary & Introduction to co-PIs

Palmer LTER General References

- Palmer LTER Web Site
 - http://www.icess.ucsb.edu/lter

General References

- Smith et. al., The Palmer LTER: A Long-Term Ecological Research Program at Palmer Station, Antarctica. Oceanography, Vol. 8, 77-86 (1995)
- Ross, Hofmann & Quetin, Foundations for Ecological Research West of the Antarctic Peninsula. Antarctic Research Series, Vol. 70, Amer. Geophysical Union (1996)

Palmer LTER LTER - brief history

- Founded by NSF in 1981
- currently 21 sites
- core data at most sites include:
 - primary productivity
 - nutrient concentrations & cycling rates
 - organic matter transport
 - trophic interactions
 - effects of natural & anthropogenic disturbances

• LTER network fosters

- cross-site analysis & synthesis
- integration of data
- communication among LTER sites
- interaction with larger scientific community

Palmer LTER LONG-TERM RESEARCH important for:

- Slow processes, e.g.,
 - long life cycles of key species
 - ecological response to climate change
- episodic phenomena, e.g.,
 - relatively rare & intense forcing
 - o ENSO
- processes with high year-to-year variability, e.g.,
 - climate in polar regions
- elusive &/or complex processes, e.g.,
 - where it is difficult to distinguish meaningful patterns from random events

Palmer LTER LTER - brief history (con't)

- being part of the LTER network offers both **opportunities &** responsibilities
- Palmer LTER founded in 1990
 - funded by NSF Office of Polar Programs
 - first marine site (coastal to pelagic) in the LTER network
 - seek to study the Antarctic Marine Ecosystem within the context, philosophy, and common goals of the LTER Network

Palmer LTER Antarctic Marine Ecosystem

- the assemblage of plants, animals, ocean, & sea ice components south of the Antarctic Convergence
- is among the largest readily defined ecosystems on Earth
 - bounded on the south by Antarctica
 - bounded on the north by the Polar Front
- ecosystem characterized by:
 - extreme seasonality
 - very high interannual variability
 - strong winds & broken seas
 - presence/absence of sea ice & related habitats
 - relatively 'simple' food web with krill an important species
 - upper level predators, some of whom (sea birds), breed on land & are thus amenable to observation
- Palmer LTER study area representative of the Antarctic Marine Ecosystem

Western Antarctic Peninsula (WAP) is a unique location for long term research

Annual Monthly distribution of LTER cruises & field season

Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	
90/91	_	-	I	*	*	-	_	_	-	_	_	_	
91/92	-	-	-	х	Nov91	L x	х	х	-	-	-	-	
92/93	-	-	_	х	Nov92	x	Jan93	х	Mar93	*	*		
93/94	-	Aug93	*	I	*	х	Jan94	x	х	-	-	-	
94/95	-	-	-	х	х	Dec95	Jan95	i x	-	-	-	-	
95/96	-	-	-	х	х	х	Jan96	x	х	-	-	-	
96/97	-	-	-	-	x	Т	Jan97	' x	x	_	-	-	
97/98	-	-	_	-	х	-	Jan98	x	х	-	-	-	
98/99	-	-	_	-	х	-	Jan99	x	х	-	-	Jun99	
99/00	*	-	-	-	х	-	Jan00) x	х	-	-	-	
00/01	-	- :	Sep01	-	х	-	Jan01	. x	х	-	-	-	
01/02	-	-	-	х	х	-	Jan02	х	х	-	-	-	

Palmer LTER WHY ANTARCTICA?

- Oceanic, atmospheric, and biogeochemical processes within this system are **globally significant**
 - o deep water formation
 - ENSO teleconnections
 - o Carbon fluxes
 - transition zone strong CO2 sink
 - export production is high but erratic
 - large repository of unused surface nutrients
- Cold waters dominate our planet but microbial & other **processes are poorly understood**
- Strong climate gradient, feedback processes & potential amplification of environmental change make Antarctic a "natural laboratory"
- Susceptible to global environmental change
 - o greenhouse gas-induced warming
 - o chlorofluorocarbon-induced atmospheric ozone depletion
 - o resource management (krill, tourism, ...)

Palmer LTER Conveyor-like circulation (Stommel, 1961; Broecker, 1991)

Palmer LTER Central Hypothesis for PAL research is:

- that interannual variations in physical processes..
 - o .. Like
 - o atmospheric forcing,
 - o oceanic circulation,
 - the extent of sea ice
 - affect all levels of the food web of the Antarctic Marine Ecosystem

• We evaluate testable hypotheses linking sea ice to:

- timing & magnitude of seasonal primary production
- carbon & oxygen dynamics, microbial loops & particle sedimentation
- krill abundance, distribution & recruitment
- breeding success & survival of apex predators
- large scale atmospheric, oceanic & cryogenic interactions
- A Primary objective is to understand the underlying natural variability in this marine ecosystem

PALMER

			Palr	ner LTF	R Seaso	nal Tim	e Line					
	early spring			late s	pring/ summer	late s	late summer		fall		winter	
	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun-	Au	
Daylength (h)	11.2	14.5	18.1	20.8	19.3	15.8	12.6	9.1	5.8	3.2	7	
Climatology												
air temp (mean °C)	-4.4	-3.2	0.3	2.0	2.9	2.4	0.6	-1.3	-3.4	-5.1	-5	
cloud cover	89	90	90	89	91	88	88	85	81	83	8	
Ice Cover										-		
low	1100010000									<	_	
average												
high	*****	******				-		-			843	
Conserved Thermorell												
Seasonal Inermoch	ne	1000	210103(01703(0)	Cartoncarospan		DECTORADORDE				-	_	
strength of												
Sti attirtation												
Nutrients (DIN)		electron com				-		-				
high												
reduced												
Phytoplankton								1		1	10.00	
bloom												
low												
New Production		fratio	> 0.5	-		fratio	< 03				-	
		1-1410	- 010			I					-	
DOM D.						-					_	
POM Export						10	w	-	-		-	
low												
max												
near zero		lam		-		hick		-		-	-	

LTER

			Pain	ner LTE	R Seaso	nal Tim	e Line				
				late s	pring/	late a					
	ear	riy sprin	g	carly s	ummer	E.L	ummer	1.	all	WII WII	iter
	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	-Auş
Daylength (h)	11.2	14.5	18.1	20.8	19.3	15.8	12.6	9.1	5.8	3.2	7.
Climatology											
air temp (mean °C)	-4.4	-3.2	0.3	2.0	2.9	2.4	0.6	-1.3	-3.4	-5.1	-5.
cloud cover (%)	89	90	90	89	91	88	88	85	81	83	8
Consumers											
Grazing (water	column)										
krill		**************	2010-04/04/04/04/04/04/04/04/04/04/04/04/04/0		******			******	and the second second	1	
salps				1						1	_
topepour											
init spawn	Ovar	y develo	p		Spawni	ing sease	on	Res	ting state		
laivai cin	per									-	
	fish								×		
Antarctic silver			20000000000000	0.0000000000							
Antarctic silver	Der				1	1				1	
Antarctic silver	per										
Antarctic silver spawn larval crit Apex Predators	per										
Antarctic silver spawn larval crit Apex Predators Adélie penguins	per	peak eg	g lay 🕈			↓ FI	edging				
Antarctic silver spawn larval crit Apex Predators Adélie penguins critical period	per	peak eg	g lay ♥ urt In wk ~4.6	cub IBro	od i Cree wk 3-6	Fle the At wk fat	edging sea, Mo ten	t			
Antarctic silver spawn larval crit Apex Predators Adélie penguins critical period adults	per	peak eg [Co 3	g lay V urt In. wk ~4.6	wk 0-3	od i Cree wk 3-6	¥Fle che At wk fat	edging <u>sea, Mo</u> ten	t			
Antarctic silver spawn larval crit Apex Predators Adélie penguins critical period adults chicks	per	peak eg Co 3	g lay V urt In. wk ~4.6	wk 0-3	od Cred wk 3-6	Flo the At wk fat	edging sea, <u>Mo</u> ten	t			
Antarctic silver spawn larval crit Apex Predators Adélie penguins critical period adults chicks	per	peak eg Co 3	g lay V urt In wk ~4.6	wk 0-3	od i Cree wk 3-6	¥Fle <u>he At</u> wk fat	edging <u>sea, Mo</u> ten	t			
Antarctic silver spawn larval crit Apex Predators Adélie penguins critical period adults chicks South Polar sku	per	peak eg Co 3	g lay V urt I In. wk ~4.6	wk 0-3	od Crec wk 3-6	Fle the At wk fat	edging sea, 1 Mo ten Chicks fl	lt			

Palmer LTER Sea Ice Index:

- a number (or at most a few numbers) derived from a set of sea ice observations during a year which may be used as a simplified ecological indicator of the yearly behavior of sea ice
- provide quantitative definitions of the timing & magnitude of sea ice coverage on temporal & spatial scales relevant to testing ice-ecosystem linkages
- used as an indicator, or measure, of variability
- show large inter-annual variability in both the timing & extent of sea ice
- display marked regional differences in timing & extent of sea ice coverage
- References:
 - Smith, Baker & Stammerjohn, "Exploring Sea Ice Indexes for Polar Ecosystem Studies", BioScience 48, 83-93 (1998)
 - Stammerjohn, Baker & Smith, "Sea Ice Indexes for Southern Ocean regional marine ecological studies", SIO Ref. 97-01 (1997)
 - Stammerjohn & Smith, "Spatial & temporal variability of western Antarctic peninsula sea ice coverage", in ARS 70, 81-104 (1996), Ross et al., eds. LTER

Palmer LTERMarine Ecosystem Sensitivity to Climate Change:
Western Antarctic Peninsula (WAP)

- Ray Smith (UCSB), Eugene Domack (Hamilton College), Steve Emslie (Western State College), Bill Fraser (Montana State U.), David Ainley (T.H. Harvey & Associates), Karen Baker (UCSD), Jim Kennett (UCSB), Amy Leventer (Colgate College), Ellen Mosley-Thompson (Ohio State U.), Sharon Stammerjohn (UCSB), Maria Vernet (UCSD)
- evidence of major change in the marine ecosystem of the WAP in response to climate change during the past century
- all records are consistent:
 - historic & instrument records
 - distribution of sea birds
 - ice cores
 - marine sediments
- evidence that WAP is a location where slight changes in sea ice extent may amplify the biotic response to climate variability

Palmer LTER Paleoenvironmental records

Faraday annual air temperature

Palmer LTER Penguin trends

Palmer LTER Sediment Record & Biological Production

Palmer LTER Adelie penguin population growth & sea ice

Western Antarctic Peninsula - Paleohistory Summary

- All evidence indicates warming during this past century
- trend evident in spite of **large inter-annual variability** & decadal scale (ENSO) variability
- climate gradient along WAP valuable for assessing ecological response to climate variability
- marine sediment record cooler climate (LAI) preceded by warmer period (~ 2700 yr BP)
- WAP regions show **cyclical fluctuations** in organic matter (time scale 200-300 yrs) & associated with primary productivity
- opposite in preferred habits (ice-obligate Adelie, ice-intolerant Chinstrap penguins) provides guage for assessing ecological change
- century scale cycles challenge us to understand these fundamental processes if we are to understand, & distinguish, **natural from anthropogenic** causes

Primary Production of the Western Antarctic Peninsula and the Southern Ocean

> Raymond C. Smith Heidi M. Dierssen Maria Vernet Karen Baker

Palmer LTER LTER Annual Primary Productivity

•	In s	itu	$PP(x10^{15}g yr^{-1})$
	0	El-Sayed (1968)	3.3
	ο	Holm-Hansen (1977)	0.5
	ο	Berger (1987)	5.2
•	CZO	CS - annual averages	
	0	Longhurst et al. (1995)	6.5
	ο	Smith et al. (1995)	$2.1^{(1)}$
	0	Antoine et al. (1996)	5.9 ⁽²⁾
	ο	Behrenfeld & Falkowski (1997)	4.8 ⁽²⁾
	0	Arrigo et al. (1998)	3.2-4.4
• ,	Sea	aWiFS	
	0	this study (with cloud)	2.4
	0	this study (max. area)	$3.2^{(3)}$

• (1)=to 55°S; (2)=corrected CZCS images; (3)using monthly area estimates from Arrigo (1997)

Summary

- unique LTER bio optical data set for SO
- bio optical properties in waters of the SO are distinct compared to other regions
 - chl normalized production
 - o Rrs
- modified SeaWiFS derived chl for SO
- optimized primary production model for SO
- estimated primary production for the SO
- Good agreement between LTER and SeaWiFS (corrected) Chl
- Annual PP estimates
 - Palmer Station
 - 93-95 gC m⁻² y⁻¹
 - o within range of previous years
 - o but with high interannual variability
 - Southern Ocean
 - o 2.4-3.2 x10¹⁵ g yr⁻¹
 - o consistent with earlier estimates

