Space-Time Scales in Oceanography and the LTER Sampling Strategy

Raymond C. Smith Palmer LTER Site Review 1994

Palmer LTER Research Central Hypothesis:

Interannual variations in physical processes, such as the extent of pack ice and oceanic circulation, affect all levels of the food web of the Southern Ocean.

Palmer LTER General Objectives

- **Document interannual variability** in the development and extent of annual pack ice as well as in the life-history parameters of primary producers and populations of key species from different trophic levels in the Antarctic marine food web;
- Quantify the processes that underlie natural variation in these representative populations;
- **Construct models that link ecosystem processes** to physical environmental variables, and that simulate the spatial/temporal relationships between representative populations; and
- Employ such models to predict and validate the impacts of altered periodicity's in the annual extend of pack ice on ecosystem dynamics.

Space/Time Scales and Sampling Strategies in Oceanographic Research

- Conceptual framework to characterize space/time scales
 - identify important mechanisms
 - link tropic levels in context of space/time
 - significance of heterogeneity for ecosystem stability
 - increase reliability of sampling
- Palmer Grid and Sampling Strategy
 - match space/time scales of Palmer LTER
 - fixed geographic locations visited repeatedly over time
 - simplifies modeling computations
 - integrates space/time data from different scales
- Example as introduction to integrated data scheme

Antarctic LTER Space/Time Scales

FIELD	AREA[km2]	
Phytoplankton patch	1x1	10^0
• krill swarm	1x10	10^1
 seabird forage 	50x50	10^3
• "near" field	100x100	10^4
• AA Peninsula	200x900	10^5
• Bellingshausen ice cover		10^6
• Southern Ocean ice cover		10~/
FORCING/PROCESSES	TIME[min]	
 optical variability 	min-hr	10^-1
• phytoplankton (diel)	hrs	10^1-10^3
• seabird forage cycle	2 days	10^3
 phytoplankton bloom 	days	10^3
• episodic weather	h-d	10^1-10^4
• ice movement	h-wks	10^1-10^5
• annual cycle	yr	5x10^5
• life cycle krill/birds	yrs	10^6

Physiography of the Arctic Basin and the waters around the Antarctic continent.

Characteristic Zones of the Southern Ocean

Large-scale circulation of the Southern Ocean showing five zones recommended for study within the US JGOFS Southern Ocean process study. [redrawn from Lutjeharms et al. (1985)]

A very simplified representation of typical time and space scales associated with plants (P), herbivorous zooplankton (Z) and pelagic fish (F). [Steele, 1978]

An indication of the space and time scales covered by various types of sampling programs. [Steele, 1978]

The Stommel Diagram, a conceptual model of the time-space scales of zooplankton biomass variability and the factors contributing to these scales. [Haury, McGowan and Wiebe]

Scales of Plankton Patterns

	NAME	SPACE SCALE	DOMINANT PATTERN *	HOW BEST	WHAT WE LEARN
	MEGA AT MACRO	10 ⁴ km	Vectorial	Communities Biomass Species	Biogeography Evolutionary history
		10 ³ km	Vectorial Reproductive	Communities Biomass Species	Biogeography Ecotones Speciation Inter-community competition "Best" places to live "Hot spots" within ecosystems
	MESO	10 ² km	Vectorial Reproductive	Biomass Species	Faunal boundaries Relationship to environmental Invasions parameters Nekton ambit Genetic selection
	10 km	Vectorial Reproductive	Saaciaa	Intra-community competition Upwelling responses	
	+	1 km	Coactiv e Social	Species	Micronekton ambit Relationship to environmental parameters
		100 m 10 m	Vectorial Reproductive Coactive Social	Species	Coexistence, niche partitioning Inter-and intra-species competition Predation Food densities required Zooplanktan ambit Relationship to environmental parameters
		1 cm	Vectorial Social	Species Individual	Inter-and intra-species competition Niche partitioning Relationship to environmental parameters
			Stochastic acts on all scales		+

Haury, McGowan and Wiebe

Phytoplankton Patches

- a "patchy" distribution is one for which the ratio of the variance to the mean is far greater than would be expected if individual organisms were positioned randomly within the sampled region
 - loss of organisms due to diffusion through boundary
 = circumference=2*pi*r
 - gain through reproduction
 - = area patch = pi*r*r
 - diffusion/reproduction $\sim 1/r$
- as size of a water mass decreases, diffusion is relatively more important and eventually a limit is reached beyond which reporduction can no longer compensate for the loss due to diffusion

D = diffusivity [L² · T⁻¹]

g = growth rate phytoplankton [T-1]

.

L = length

T = time

suppose critical size Lc = F (D,g)

dimensional analysis leads to

 $Lc = b (D/g)^{1/2} [L]$

b = non-dimensional constant of order unity

Space/Time Domains of Oceanographic Research Platforms

Platform		Sampling Domains			
Description	Time	Horizontal	Vertical		
Moorings	1 min - years	cms	At fixed depths: 10 m - 100 m		
Ship on station	<1 h - 4 weeks	On station: cms Inter-station: kms	<1 m - 100 m		
Ship mapping/fixed depth	1.5 days - 4 weeks	<1 m - 100 km	\pm few meters upper 100 m		
Ship tow-yos	1.5 days - 4 weeks	0.5 km - 100 km	<1 m - 100 m		
Drifters/fixed depth	1 min - 6 months	<1 m - 1000 km	\pm few meters upper 10 m		
Planes	1 day - 1 week	10 m - 1000 km	Upper few meters (opt. atten. depth) ^a		
Satellites	1 day - years	1 km - global	Upper few meters (opt. atten. depth)		

^aoptical attenuation depth

Space/Time Scales of Phytoplankton Variability

- Of interest per se
- A central component in dynamical biological oceanography to
 - characterize scales descriptively under different environmental conditions
 - identify mechanisms leading to space/time variability in phytoplankton populations
 - understand the proximal determinants of phytoplankton growth and the linkages of this growth to high tropic levels
 - understand the significance of this heterogeneity in terms of the stability of the ecosystem
 - understand the fundamental variability of the ocean environment in order to increase the reliability of sampling

Schematic Power Spectra for the Horizontal Variability of Chlorophyll

[Smith, Zhang, Michaelsen, 1988]

Palmer LTER Grid

- Facilitates integration of spatial data acquired at different scales and times, and in different formats:
 - Measure environmental parameters
 - Map abundance and distribution
 - Monitor changes in space/time
 - Model processes on range of space/time scales
- Objectives of an integrated data scheme:
 - data acquisition (identify and gather required data)
 - preprocessing (manipulate data into useable forms)
 - data-management (creation of and access to the database)
 - manipulation and analysis (analytic operations in database)
 - product generation (final copy: graphic/digital/hard)

EXAMPLES Works in Progress

related to the space/ time sampling strategy

- Sampling near the LTER area
- Bio-Optical Models of Oceanic Primary Productivity
- Net Primary Productivity

 $I_{\lambda_1 - \lambda_2} = I_{0\lambda_1 - \lambda_2} (d/d_0)^2 * \cos\theta \{\exp[-(a+b/V)/\cos\theta]/\{1 - r_{\lambda_1 - \lambda_2}(a'+b'/V)\}$ $* \exp[-a_v(U_v/\cos\theta)^{b_v} * \exp[-a_0(U_0/\cos\theta)^{b_0}$

where $I_{0\lambda_1-\lambda_2}$ is the monochromatic extraterrestrial irradiance from $\lambda_1-\lambda_2$ λ_1 refers to 700nm and λ_2 refers to 400nm $(d/d_0)^2$ is the correction due to noncircular orbit of the Earth θ is the solar zeinth angle $r_{\lambda_1-\lambda_2}$ is the average surface reflectance over $\lambda_1-\lambda_2$ V is the surface visibility, from aerosol database U_v is water vapor amount U_0 is ozone amount

NPP = (1/39) $\rho \times PAR(0^+) \times \langle Chl \rangle_{tot} \times \Psi^*$

where NPP is net primary production in mg C m⁻² d⁻¹, ρ is the ratio of active pigments to all pigments, PAR(0⁺) is daily integrated PAR in Joules m⁻², <Chl>_{tot} is surface pigment concentration in g m⁻², and Ψ^* cross-section of photosynthesis m² (g Chl)⁻¹.

Global and Regional Oceanographic Net Primary Productivity from Satellite Derived Data

- PAR is calculated using a daabase from the International Satellite Cloud Climatology Program (ISCCP)
 - presence of land
 - precipitable water
 - cloud fraction
 - cloud reflection
 - temperature
 - satellite viewing angle
- Chlorophyll (CZCS pigment biomass)
 - Univ of Miami
 - Goddard Space Flight Center
 - Gene Feldman

Summary of Uncertainties

	Case I	All Other
Parameter	Waters	Waters
rho, ρ	±20%	±20%
PAR*	±55%	±65%
{C} _{tot}	±35%	+100%, -50%
Total	±68%	+121%, -84%