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[1] Drifting cylindrical traps and the flux proxy ***Th indi-
cate more than an order of magnitude higher sinking fluxes
of particulate carbon and 23*Th in January 2009 than mea-
sured by a time-series conical trap used regularly on the
shelf of the west Antarctic Peninsula (WAP). The higher
fluxes measured in this study have several implications for
our understanding of the WAP ecosystem. Larger sinking
fluxes result in a revised export efficiency of at least 10%
(C flux/net primary production) and a requisite lower regen-
eration efficiency in surface waters. High fluxes also result
in a large supply of sinking organic matter to support sub-
surface and benthic food webs on the continental shelf.
These new findings call into question the magnitude of sea-
sonal and interannual variability in particle flux and reaffirm
the difficulty of using moored conical traps as a quantitative
flux collector in shallow waters. Citation: Buesseler, K. O.,
A. M. P. McDonnell, O. M. E. Schofield, D. K. Steinberg, and
H. W. Ducklow (2010), High particle export over the continental
shelf of the west Antarctic Peninsula, Geophys. Res. Lett., 37,
L22606, doi:10.1029/2010GL045448.

1. Introduction

[2] The coastal zone and sea-ice margins of Antarctica
exhibit high and variable rates of primary production [Vernet
et al., 2008]. This high production is important as the base
of a food web for top predators [Krox, 2006], for its support
of a rich benthos [Smith et al., 2006], and for balancing a
microbial demand for labile organic matter [Ducklow et al.,
2006]. In order to determine this region’s role in the global
carbon cycle and the Antarctic marine food web, it is nec-
essary to make accurate measurements of particulate carbon
(PC) fluxes. Unfortunately, the study of PC fluxes off Ant-
arctica is complicated by its remote location, harsh condi-
tions, sea ice, export variability in space and time, and by
the limited tools we have to study the transfer of organic
matter produced in the euphotic zone to the seafloor. Given
these substantial impediments, few measurements of sink-
ing PC fluxes have been made in this region and, as a result,
the fate of the WAP’s high phytoplankton production is
poorly understood and quantified.
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[3] Our present view of the WAP’s biogeochemical func-
tion, variability, and ongoing changes is derived in large part
from the Palmer Long-Term Ecological Research Project
(PAL) which has provided a detailed time-series of observa-
tions of the marine ecosystem since 1990 [Ducklow, 2008].
As part of this program, sinking PC fluxes have been mea-
sured at 170 m depth with the use of a bottom-moored time-
series sediment trap. These measurements have revealed
the extreme seasonality of the C cycle at this location, with
PC fluxes varying four orders of magnitude between the
ice-covered winters and the moderately productive sum-
mers. The peak of the annual flux is also now occurring
about 40 days later in the season than it did at the beginning
of the record. Curiously, however, the mean annual flux
derived from the PAL trap suggests an extremely low annual
export ratio (e-ratio = trap flux/net primary productivity)
averaging <4% between 1992-2007 [Ducklow et al., 2008].
These e-ratios are much lower than what would be expected
from a high-latitude ecosystem like the WAP, which is domi-
nated by quickly-sinking diatom aggregates and krill fecal
pellets [McDonnell and Buesseler, 2010]. This low e-ratio
severely complicates our understanding and interpretation
of the ecosystem function and carbon cycling along the
WAP [e.g., Ducklow et al., 2008]. With the rapid warming
[Vaughan et al., 2003] and associated changes in ecosystem
structure and function [Monfes-Hugo et al., 2008] that are
already being observed in this sensitive region, it is imper-
ative that we resolve export fluxes.

[4] In this study, we present a new set of upper ocean
particle flux measurements collected during a singular
intercomparison opportunity conducted in January 2009
along the WAP. We conducted three independent mea-
surements of particle flux using two trap designs as well as
the particle flux proxy, thorium-234. Our results suggest
that PC fluxes are more than an order of magnitude larger
than those determined by the ongoing and multidecadal
measurements of flux from a moored time-series sediment
trap at this site. While the data are from a single set of
observations in the WAP, we discuss how these new esti-
mates have significant implications for our understanding of
the magnitude, efficacy and function of the biological pump
in this region.

2. Methods

[5] Three independent methods were used to quantify
sinking particle fluxes at 64° 30'S latitude, 66° 00'W lon-
gitude, 130 km off shore on the continental shelf of the
WAP. The first method was a moored conical shaped time-
series trap (PARFLUX Mark 78H, 21 sample cup, McLane
Research Lab) that has been deployed annually as part of
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Figure 1. Comparison of average particulate sinking fluxes
of (left) PC and (right) ***Th during January 2009 as esti-
mated by a moored time-series trap, a drifting cylindrical
trap and as derived from the water column distribution of
234Th. Data in Table 1.

PAL since 1992 [Ducklow et al., 2008]. Sample cups were
filled with buffered brine and formalin as a preservative and
swimmers were removed under a microscope. The moored
trap at 170 m (350 m water depth) was recovered January 10,
2009 after a one year deployment and *>*Th was analyzed
immediately at sea on 1/8th splits of the 5 most recent
sampling cups (programmed for 6-8 day intervals during
peak flux periods, December 6, 2008—January 10, 2009).
These splits were later analyzed for PC as described below
for the drifting traps. A parallel set of sample splits was
analyzed for organic carbon after acid fuming to remove
carbonate.

[6] The second method was a surface-tethered, drifting
cylindrical trap array deployed at the same site for 1.5 days
between January 8—10, 2009 following Lamborg et al.
[2008]. Trap tubes were deployed at 150 m with brine and
formalin, and swimmers were removed under a microscope.
Sample analyses for ***Th on both traps were performed as
described by Lamborg et al. [2008]. Carbon analyses at the
Woods Hole Oceanographic Institution (WHOI) did not
include acid fuming, however these should be equivalent
to fumed samples since carbonate was <2% of total PC
at 500 m in a nearby trap [Palanques et al., 2002] and
expected to be even less in shallow traps. Thus, we use PC to
refer to both moored trap POC and drifting trap C fluxes,
reported here in units of mmol C m > d™".

[7] The third method relied on the particle-reactive
and naturally occurring radionuclide, thorium-234 (half-
life 24.1 days), which has been widely used as a particle
flux proxy [Waples et al., 2006]. In general, lower **Th
activities relative to its conservative parent, 23 8U, indicate a
higher export flux of particles. Total >**Th samples (4 L)
were collected with the CTD/Rosette and analyzed via meth-
ods described by Pike et al. [2005]. Uranium-238 is deter-
mined by its constant relationship with salinity [Rutgers
van der Loeff et al., 2006]. The flux of ***Th is deter-
mined by a simple 1-D steady-state model [Savoye et al.,
2006]. In 2009, we measured total 2*Th at 10 depths in
the upper 250 m in profiles collected within 1 km of the
drifting trap site on January 8, 9, and 11, 2009 and report
fluxes from those profiles calculated at 150 m in units of
dpm m 2 d".
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[s] We also use the >**Th flux approach to determine PC
fluxes by multiplying the *>**Th flux by the C/***Th ratio on
particles [Buesseler et al., 2006]. The C/**Th ratio was
determined here on three different sets of samples: the two
trap systems and also particles collected via a large volume
in-situ pumping system at 150 m on January 9th. That sys-
tem filtered approximately 1000 liters sequentially through
a 53 pm and 10 pum screen (142 mm diameter), which were
then processed for **Th and PC, identical to the drifting
trap samples.

3. Results

[9] Particle fluxes measured with the moored trap indicate
substantially lower flux than measured by the drifting trap
and as calculated from >**Th profiles (Figure 1). On aver-
age, the moored trap fluxes are a factor of 30 lower than the
drifting trap fluxes for both PC and ***Th (Table 1). The low
flux in the moored trap cannot be attributed to an anoma-
lously low flux in the last moored trap cup (January 3-10),
as the fluxes were similarly low in all of the 5 cups between
December 6-January 10 (Table 1). For the drifting trap, repli-
cate tubes agreed within 13% for fluxes of both PC (8.2 mmol
Cm?2d")and #*Th (2600 dpm m > d ).

[10] The estimate of ?**Th fluxes derived from the total
234Th profiles (1640 dpm m 2 d ') are in closer agreement
with the drifting trap and on average about 20 times greater
than the moored trap (Figure 1). The variability in >>*Th flux
predicted from each of the three different profiles is small
(£23%). PC fluxes can be calculated from the ***Th flux
derived from the water column data and an estimate of the
C/***Th ratio of sinking particles. We measured a similar
C/***Th ratio in the moored trap (4.2 + 0.4 pmol dpm™ "),
drifting trap (3.1 £ 0.2) and the particulate material collected
via in situ pumps screens as the >53 ym (3.6 £ 0.1) or 10—
53 pum size fractions (3.2 £ 0.1). No matter which ratio is
used, the PC flux thus calculated is 18 to 25 times greater
than found in the moored trap, indicating a similar PC col-
lection bias as found for the two trap comparison.

4. Discussion

[11] Two decades ago Karl et al. [1991] stated: “Very little
is known about the immediate fate of the Antarctic phyto-
plankton production”. Despite some progress, our under-
standing of upper ocean export in the Antarctic remains
limited not only because of the remote location and harsh
sampling conditions, but also as we show here, due to
important methodological issues. Time-series moored con-
ical sediment traps are ideal for capturing the seasonal pat-
tern of sedimentation in the deep sea and allow unattended
sampling during ice-covered periods. However, biases in
applying these traps as quantitative collectors in the upper
ocean need to be considered [Gardner, 2000; Buesseler
et al., 2007]. This applies not just to the WAP, but also
to other polar coastal waters and shelves, and in general to
other upper-ocean settings.

[12] The (20-30x) higher PC and ***Th flux in the
surface-tethered drifting trap relative to the moored trap is
supported by three water column profiles of ***Th at the
same site. These measurements result in computed ***Th
fluxes that are also more than an order of magnitude higher
than in the moored trap. While the comparison between

2 of 5



L22606

BUESSELER ET AL.: HIGH C EXPORT OVER ANTARCTIC PENINSULA

L22606

Table 1. Summary of PC, **Th Fluxes and Export Ratios

Z4Th Flux PC Flux Export
Collection Dates (dpm m™2 d! + error) (mmol C m 2 d™' £ error) Ratios®
Moored Trap
Jan, 3-10° 79+ 1 0.33 £ 0.03
Jan. 3-10° 0.20 £ 0.01
average 79+ 1 0.26 £ 0.06 0.3%
Dec. 6-Jan. 10° 59 +36 0.27 £0.11
Dec. 6-Jan. 10° 0.19 £ 0.11
Drifting Trap
Jan. 8-10" 2591 + 38 7.7+ 0.4
Jan. 8-10° 2638 + 37 87+04
average 2614 + 27 82+0.3 10%
234Th Derived
Jan. 8% 1822 + 185 53+1.0
Jan. 9 1446 + 196 42+0.8
Jan. 118 1640 + 239 4.4 +0.8
average 1636 + 188 4.6 +0.6 6%

2Export ratio = PC flux/primary productivity. Productivities averaged 82 mmol C m 2 d ™" on Jan. 9, 10, 12 using *C

methods and 24 hour deck board incubations.

©1/8th split; WHOI CHN facility; **Th error from counting statistics, PC error from CHN analysis.
©7/8th split; MBL CHN facility; PC error from CHN analysis.

dAverage and std. dev. for 5 sample cups- WHOI splits.

“Average and std. dev. for 5 sample cups- MBL splits.

f234Th and PC flux and error are from two collection tubes from a single 150 m drifting trap.
&Flux of **Th and propagated error and PC flux derived from a single water column ***Th profile on date indicated.

sediment trap 2**Th fluxes and fluxes estimated from a model
of water column >**Th data has its limitations [Buesseler
et al., 2009; Cochran et al., 2009; Savoye et al., 2006], a
difference this large is hard to interpret other than as a large
under-collection bias by the moored trap.

[13] Unfortunately, there are no other trap data for direct
comparison from this site during its 17-year operation, but
we can compare to a site 25 km away, where 23*Th fluxes at
the seafloor derived from sediment inventories during dif-
ferent seasons and years were 400 to 2600 dpm m 2 d!
[McClintic et al., 2008]. Fluxes of <100 dpm m > d™' as
seen in all 5 cups of our moored trap do not match this
sedimentary data. Although several hundreds of kilometers
to the northeast and in more protected and coastal waters,
two previous studies also deployed drifting cylindrical traps
in the Gerlach and Bransfield Straits, and thus permit a
generalized comparison to the fluxes we measured at the
PAL trap site. The first study in 1986 found fluxes of 4 to
>30 mmol C m 2 d! at 100 m in December through March
[Karl et al., 1991]. Another group in 1995 measured 10—
60 mmol C m > d"' at 60 m in December though January
[Anadon et al., 2002]. These fluxes are also more than an
order of magnitude higher than the PAL moored trap, and
even several-fold higher than our drifting traps that are
further offshore.

[14] We know from other studies that there are multiple
reasons why conical traps may undercollect sediment fluxes
[Buesseler et al., 2007]. First among the possible causes is
trap hydrodynamics, whereby horizontal flow over the trap
mouth makes these traps susceptible to collection biases due
to resuspension of material before it reaches the trap cup.
This is a greater concern in conical than cylindrical sediment
traps [Gardner, 2000] and in the upper ocean in general
where currents are faster. These hydrodynamic effects are
difficult to separate from other possible collection biases,

such as solubilization or loss of particulate material after
collection, which is greater in longer deployments and at
shallower depths [Antia, 2005]. Another factor that may
contribute to lower fluxes is consumption of detrital parti-
cles by zooplankton feeding along the walls of a conical
trap.

[15] The significance of the higher fluxes to the WAP
ecosystem is profound for many reasons. First, one measure
of the strength of the biological pump is the export effi-
ciency, or ratio of flux to primary production. Our export
ratio in January at 150 m is 10% for the drifting trap (Table 1).
In contrast, the moored trap would indicate an e-ratio in
January 2009 of 0.3% which seems unreasonably low for
a site dominated by a short food chain with large diatoms
and krill. Using a one-month lag between peak productivity
and export, Ducklow et al. [2008] calculated e-ratios for the
moored trap ranging from 0.3% to 2.6% between 1992—
2007 (with one exception of 28% in 2002/2003 when pri-
mary production was extremely low). Such a low export
ratio is equivalent or lower than seen in oligotrophic set-
tings such as the Bermuda Atlantic Time-series Study site
[Steinberg et al., 2001].

[16] We believe that the higher e-ratios as seen in the
drifting trap and as derived from ***Th during January 2009
are more likely to be characteristic of this WAP region. In
fact, our e-ratios may be an underestimate of the seasonal
average because they are a snapshot of conditions prior to
expected peak flux periods. Anadon et al. [2002] estimate a
regional PC e-ratio of 26% at 60 m but that was only for the
short Dec./Jan. growth season. E-ratios derived from ***Th
profiles for the Ross Sea were 25-70% during the summer
of 1996/1997 [Cochran et al., 2000] and are higher at high
latitude sites in general [Buesseler, 1998]. While our new
estimate of an e-ratio of 10% is substantially larger than
suggested by the moored sediment trap, it still implies that
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there is substantial recycling component to the foodweb of
the upper ocean at WAP, an idea that is consistent with
inverse model results of Ducklow et al. [2006].

[17] Higher fluxes measured at depth in the WAP also
imply less PC attenuation and recycling in surface waters,
and more energy to support subsurface and benthic food
webs. Although the moored trap sampled flux at only one
depth, the low fluxes imply significant recycling of PC as it
settles to the sea floor. There is some support for the idea
that sites of high seasonality in flux have low export/high
attenuation [Lutz et al., 2007]. However, with our new data,
we must question that assumption at the PAL site and
possibly for our broader understanding of the Southern
Ocean, since many of the traps used in the Southern Ocean
are moored conical traps in waters <1000 m (for example,
16 of 24 used by Lutz et al.). Looking in more detail at one
example, in the Ross Sea, the flux of PC at 200 m estimated
by a seasonal C budget exceeded the PC flux measured by a
moored conical sediment trap by a factor of 6.6 [Sweeney
et al., 2000]. Additionally, seasonal **Th data, indicated
more than 10 times lower fluxes in the moored trap during
peak summer flux periods [Cochran et al., 2000]. This was
also supported by annual budgets of the longer-lived *°Th
and 23!Pa isotopes which indicated at least a factor of 3-6
higher export than the moored trap, and possibly by as much
as an order of magnitude [Fleisher and Anderson, 2003].
Thus, low export efficiency assigned to these high latitude
sites using shallow moored conical trap data would be in
error.

[18] A final implication of higher particle fluxes in the
WAP is that it calls into question the variability in flux, and
the fundamental causes thereof, as measured by the moored
time-series trap. This is important, as Antarctic PC fluxes in
general are thought to be characterized by extreme season-
ality and large interannual variability in particle flux [e.g.,
Wefer et al., 1988]. In the moored PAL trap, on average
85% of the flux is caught in the one-month period between
late December and January, and total annual fluxes range
from 13 to 413 mmol C m > a~' between 1993 and 2006
[Ducklow et al., 2008]. Our data suggests that these summer
fluxes could be even higher, though we can’t necessarily
extrapolate to winter conditions. That the moored trap
shows seasonality is not surprising, as ultimately if total
particle stocks in the water column are low, such as under
ice conditions, then material caught in the trap will be low,
and vice-versa during bloom conditions. The similarity in
C/***Th ratios mentioned above and C/N (data not shown)
between the drifting and moored traps, as well as micro-
scopic analysis of trap material (a dominance of krill fecal
pellets in both traps) give some confidence that the quality
of the material in the moored trap is not dramatically dif-
ferent, i.e., sorting is not apparent. However, we should be
cautious about the certainty in the magnitude of the highest
peak and lowest flux conditions as well as interannual var-
iability in fluxes, until we understand more about the root
causes of these potential biases.

5. Conclusion

[19] In this study, for the first time, two additional upper
ocean particle flux methods, namely drifting cylindrical
traps and the flux proxy 2**Th, were used to show more than
an order of magnitude higher fluxes for both PC and ***Th
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at 150 m compared to a moored time-series trap at the same
WAP site. The implications of a stronger and more efficient
biological pump are important, including a higher organic
matter source to subsurface and benthic ecosystems. This is
consistent with a short food chain and high C fluxes asso-
ciated with blooms of large diatoms and fecal pellet pro-
duction by krill characteristic of the WAP and many polar
blooms. We expect that the highly periodic seasonal pattern
in flux seen in the existing time-series trap data will hold,
with extremely low fluxes under ice-covered conditions,
though the magnitude of these fluxes and the interannual
variability are difficult to quantify.

[20] To answer the question from Karl et al. [1991]
regarding the fate of Antarctic phytoplankton production,
we still need much better quantitative estimates of year-
round export fluxes combined with new ecological and
biogeochemical process studies, to determine the mechan-
isms that control the biological pump within the euphotic
zone and especially the waters immediately below where
the variability in flux attenuation between sites is greatest
[Buesseler and Boyd, 2009]. Fortunately, alternatives to
moored conical traps do exist for use in the mesopelagic
and upper ocean, including moored time-series cylindrical
designs that should be less susceptible to hydrodynamic
biases [Cochran et al., 2009; Peterson et al., 1993]. Also, as
shown here, short deployments of drifting traps, or better
yet, use of untethered, neutrally buoyant sediment traps
[Buesseler et al., 2007; Lamborg et al., 2008] can reduce
even further collection biases due to flow around traps.

[21] Ultimately, the use of multiple methods (different
traps designs, in-situ tracers, particle cameras and biogeo-
chemical flux models) will be needed to both confirm the
sedimentary fluxes and resolve the mechanisms that control
flux in the WAP and other sites. Only with a mechanistic
understanding of particle export will we be able to predict
the consequences of global warming, changing ice dynam-
ics, and plankton community shifts on the strength of the
biological pump, and hence the impact of climate change on
C sequestration, nutrient recycling, and food supply to top
predators and benthic communities along these productive
margins of the Antarctic.
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