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The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to
the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the
shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and
characterized by deep embayments that are often interconnected by channels that facilitate transport of
heat and nutrients into the shelf domain.The ecosystem is divided into three subregions, the continental
slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological
distributions. TheWAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, theWAP
system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill,
Euphausia superba. Ecosystemdynamics is dominated by the seasonal and interannual variation in sea ice
extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth,
having experienced a 28C increase in the annual mean temperature and a 68C rise in the mean winter
temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased
significantly in the past decade, sufficient to drive to a 0.68Cwarming of the upper 300 m of shelf water.
In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the
northernWAP has been migrating south, displacing the once dominant cold, dry continental Antarctic
climate and causingmulti-level responses in themarine ecosystem. Ecosystem responses to the regional
warming include increased heat transport, decreased sea ice extent and duration, local declines in ice-
dependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in
phytoplankton and zooplankton community composition and changes in krill recruitment, abundance
andavailability topredators.Theclimate/ecological gradients extendingalong theWAPand thepresence
of monitoring systems, field stations and long-term research programmesmake the region an invaluable
observatory of climate change and marine ecosystem response.

Keywords: Palmer Station; LTER; climate change; Adélie penguin; Antarctic krill;
Antarctic Circumpolar Current
1. INTRODUCTION
The marine ecosystem of the West Antarctic Peninsula
(WAP) extends for approximately 1500 km from the
Bellingshausen Sea near 758 S, 808W to the northern
tip of the peninsula near 638 S, 608 W, and from the
mostly glaciated coast in the east across the continental
shelf to the shelf break in the west. The shelf is about
200 km wide and averages 430 m in depth. The shelf
break is defined by steep, rapidly deepening bathym-
etry between 750 and 3000 m (figure 1). The glacially
sculpted (Anderson 2002) coastline along the penin-
sula is highly convoluted, cut with numerous islands,
deeps, bays, fjords and a series of embayments often
tribution of 8 to a Theme Issue ‘Antarctic ecology: from
ecosystems. I’.
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interconnected by channels, sometimes as deep as

900 m. The domain is divided into three subregions

(continental slope, shelf and coastal regions of

figure 1b) consistent with the bathymetry, ocean

dynamics, water mass and biological distributions.

This region at its widest extent includes three of the

four circumpolar Antarctic marine ecosystem types or

biomes defined by Treguer & Jacques (1992): the

Permanently Open Ocean Zone; Sea Ice Zone (SIZ)

and, bordering the continent, the Coastal and

Continental Shelf Zone. The Polar Front Zone per se is
not in our study region but the Southern Antarctic

Circumpolar Current Front (SACCF) impinges on the

continental shelf (see below). Like other SIZs, theWAP

system is very productive, supporting large stocks of

marinemammals andbirds, aswell as theAntarctic krill,

Euphausia superba (Ross et al. 1996). The dynamics of
This journal is q 2006 The Royal Society
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Figure 1. (a) Palmer LTER study region along the WAP showing sampling grid (filled squares with labelled contoured
bathymetry (750 m intervals) and climatological southern edge of Antarctic Circumpolar Current (ACC; dashed grey line).
(b) The main sampling grid occupied each January since 1993 consists of stations (small squares 10 km apart) arranged in 10
onshore to offshore lines spaced 100 km apart, with line 000 to the south and 900 to the north along the peninsula (only lines
200–600 shown); stations proceed offshore from an arbitrary 0 line defining the peninsular coastline. Bathymetry shaded
(whiteR750 m, 750 m!light-grey%450 m, dark-grey!450 m) and contoured (greater than or equal to 1500 m at 750 m
intervals); white diamond, Palmer Station; white triangle, long-term sediment trap mooring; F, Faraday (Vernadsky) base; P,
Palmer Deep region on shelf; Ro, Rothera Station; G and C, Grandidier Channel and Crystal Sound; MB, Marguerite Bay;
An, R and Ad, Anvers, Renaud and Adelaide Islands, respectively; continental shelf break indicated by dashed bold line (slope to
left); shelf-coastal subregions separated by solid bold line; and small white circles, various stations ‘inside’ the islands and
channels with distinct hydrography influenced by glacial ice melt.
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the ecosystem is dominated by the seasonal growth,
extent and retreat of sea ice and their interannual
variations. The Antarctic Peninsula (AP) is also one
among the most rapidly warming regions on Earth,
having experienced a 28C increase in annual mean
temperature since 1950. The surface ocean, west of the
peninsula, has also warmed significantly. Meredith &
King (2005) demonstrate warming of over 18C since
1955–1964. In the past two decades, dramatic
responses of the ecosystem to the climate and ocean
warming have been documented. In this article, we
synthesize the studies of rapid climate change and
ecosystem responses to it, proposing the WAP marine
system as a premier example of the more generalized
phenomenon experienced globally. Results from the
Palmer Antarctic Long-Term Ecological Research
(Pal-LTER) project (Ross et al. 1996; Smith et al.
2003b),Research onCoastalAntarcticEcosystemRates
(RACER; Huntley et al. 1991), Southern Ocean
GLOBEC (Hofmann et al. 2004) and other studies are
reviewed. This paper provides an observational context
for the recent review of Southern Ocean ecology by
Smetacek & Nicol (2005).

The life cycles of organisms in the Antarctic coastal
marine ecosystem depend profoundly on the annual
cycle and interannual variations in sea ice cover. We
begin by discussing recent climate changes and their
effects on the duration and extent of sea ice, then
proceed to some of the principal components of the
upper ocean pelagic ecosystem. Benthopelagic
exchanges are of less importance because Antarctic
continental shelves are greater than 300 m deep, well
Phil. Trans. R. Soc. B (2007)
below the winter mixed layer. Benthic systems are
reviewed by Clarke et al. (2007) and by Smith et al.
(in press a).
2. CLIMATE AND ICE
(a) Surface air temperature

Significant changes have occurred over the last half-
century in the AP region, including the northwestern
Weddell and southern Bellingshausen seas, as revealed
by instrument records, station observations, satellite
data and paleoenvironmental records (Domack et al.
2003). Surface air temperature records, in particular,
reveal a warming in winter of 5–68C over the past 50
years, a warming rate that exceeds any other observed
globally (Vaughan et al. 2003). The paleo-records
provide a longer-term history of change in the AP
region and lend perspective for understanding the most
recent (half century) warming trend, showing it to be
unique within the last few millennia (Smith et al.
1999b; Domack et al. 2003; Vaughan et al. 2003).

The British Antarctic Survey meteorological obser-
vations (http://www.antarctica.ac.uk/met/gjma/temps.
html) at Faraday/Vernadsky station (65815 0 S,
64816 0 W) have been especially useful given their length
(O5 decades), consistency and quality control. Here,
we update and augment our earlier analyses of these
data (Smith et al. 1996b; Smith & Stammerjohn 2001)
with the addition of data through 2004. Figure 2a
shows the Faraday/Vernadsky annual average air
temperatures from 1951 to 2004 (NZ54). The linear
trend (solid line) determined by the least squares slope

http://www.antarctica.ac.uk/met/gjma/temps.html
http://www.antarctica.ac.uk/met/gjma/temps.html
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Figure 2. (a) Annual average air temperature recorded at Faraday/Vernadsky Station (65815 0 S, 64816 0 W) from 1951 to 2004.
The linear regression fit (solid) and G1 standard deviation (dotted) about this fit are included. Annual average air temperature
recorded at Rothera Station (67834 0 S, 68808 0 W) from 1977 to 2004 is shown by the dotted curve. The standard error and
significance were determined using the effective degrees of freedom (NeffZ24.8) present in the regression residuals (see Smith
et al. 1996a for methods). Also included are the G1 standard deviation lines (dotted). (b) Annual average sea ice extent for the
Palmer LTER region and for the Southern Ocean (inset) from 1979 to 2004. The linear regression fit (solid) and G1 s.d.
(dotted) about this fit are included. Spatial maps of linear trends (1979–2004) in (c) day of advance and (d) day of retreat in the
greater AP region.
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is 0.054G0.0178C yrK1 (p!0.01). Monthly and

seasonal analyses show that the warming trend in

Faraday/Vernadsky air temperatures is strongest during

the midwinter months and peaks in July at 0.1165G
0.0476 8C yrK1 (NeffZ32.5, pZ0.01). This represents

a 6.38C increase in July temperatures over the 54-year

record. Spring and summer trends are not as

pronounced. The record from Rothera (further south

on the WAP, 67834 0 S, 68808 0 W) shows strong

temporal coherence to Faraday/Vernadsky (figure 2),

displaying similar trends but with mean annual

temperatures averaging a few degrees cooler (King

1994; Smith et al. 1996b). Spatial coherence of surface
air and sea surface temperature in the AP region is also

displayed in infrared satellite observations (Comiso
Phil. Trans. R. Soc. B (2007)
2000). Changes in the annual progression of tempera-
ture and the amount of variability associated with those
temperatures is suggestive of a climate shift along the
WAP, where continental influences from the south are
giving way to increasing maritime influences from the
north (Smith et al. 1999).
(b) Sea ice

Concurrently, various trends have been detected in
Antarctic sea ice, showing that magnitude and
direction are strongly dependent on the region and
time-interval studied (Cavalieri et al. 1997; Stammer-
john & Smith 1997; Watkins & Simmonds 2000;
Zwally et al. 2002; Parkinson 2004). Here, we analyse
the trends during 1979–2004 (NZ26), the time period
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for which reliable satellite observations (Comiso et al.
1997) are currently available. In contrast to the
Southern Ocean as a whole, but consistent with the
observed AP warming, the annual mean sea ice extent
has trended down in the WAP region. Figure 2b shows
the mean annual sea ice extent for the Southern Ocean
(inset) and the Pal-LTER region. The Southern Ocean
trend is weakly positive (11001G5982 km2 yrK1,
NeffZ20.4, pZ0.04), representing a 2% increase
relative to the mean (1.2!107 km2) over 26 years. In
contrast, the trend in the Pal-LTER region is strongly
negative (K1502G814 km2 yrK1, NeffZ13.9,
pZ0.05), representing a 40% decrease relative to the
mean (98 361 km2) over 26 years. As shown by
Smith & Stammerjohn (2001), the decreasing trend
in annually averaged sea ice extent in the Pal-LTER
region is due to a decrease in the duration (not
magnitude) of winter sea ice extent (i.e. winter sea ice
still roughly extends as far equatorward as before but
does not remain there for as long). This is in agreement
with other studies that have shown a decrease in the
winter sea ice season in the AP region (Parkinson 2002,
2004). Concurrently, winter sea ice concentration is
decreasing (Vaughan et al. 2003; Liu et al. 2004).

Recent studies confirm that the decrease in the
duration of winter sea ice extent is due to strong trends
in the timing of sea ice advance and retreat, such that
the advance is occurring later while the retreat is
occurring earlier (Stammerjohn et al. in press a,b).
Figure 2c,d also shows the spatial distribution of the
trends in the advance and retreat in the greater AP
region. The solid and dotted contours denote the 0.01
and 0.10 significance levels. Most of the WAP coastal
region shows a strong trend towards a later advance and
a somewhat weaker trend towards an earlier retreat;
further to the south (i.e. southern Bellingshausen Sea)
the magnitudes of the trends increase. Elsewhere in the
Southern Ocean, the advance and retreat trends are
weak except in the western Ross Sea region where
winter sea ice duration is increasing (Parkinson 2002),
concurrent with trends towards an earlier advance
and later retreat (Stammerjohn et al. in press a),
and overall increasing winter sea ice concentration
(Liu et al. 2004).

(c) Climate covariability

Numerous studies have shown air temperature and sea
ice in the AP region to be sensitive to variability in
(i) the Southern Oscillation (Simmonds & Jacka 1995;
Smith et al. 1996b; Kwok & Comiso 2002a), (ii) the El
Niño/southern Oscillation (ENSO; Marshall & King
1998; Harangozo 2000; Rind et al. 2001; Yuan &
Martinson 2000, 2001), and (iii) the Southern Annular
Mode (SAM; Hall & Visbeck 2002; Thompson &
Solomon 2002; Simmonds 2003; van den Broeke &
Lipzig 2003; Lefebvre et al. 2004; Marshall et al. 2004).
Other studies offer general reviews of climate covari-
ability and the high latitude teleconnection in the
Southern Ocean (Carleton 2003; Parkinson 2004;
Simmonds & King 2004; Turner 2004; Yuan 2004).
Yuan (2004) provides a thorough conceptualization
(figures 5 and 8 in that study) of the potential
mechanistic linkages between polar and lower latitude
ocean and atmospheric processes. A few studies in
Phil. Trans. R. Soc. B (2007)
particular have analysed the high latitude response in
the Southeast Pacific to the combined effect of ENSO
and SAM variability (Kwok & Comiso 2002b; Liu et al.
2004; Fogt & Bromwich 2005; Stammerjohn et al.
in press a). In fact, Yuan (2004) notes that this region
undergoes the largest extra-tropical surface tempera-
ture response to ENSO on Earth.

Figure 3 summarizes some of the highlights
of climate covariability in the Pal-LTER region.
(i) Pal-LTER sea ice extent negatively covaries with
Faraday/Vernadsky air temperature (1979–2004
monthly, RZK0.79; annual, RZK0.94), (ii) 10-year
running correlations show, however, that covariability
has decreased since the 1990s, (iii) Pal-LTER sea ice
extent and the Southern Oscillation Index (SOI; the
standardized sea-level pressure difference between
Tahiti and Darwin, Australia) negatively covary
(1979–2004 monthly, RZK0.24; annual, RZK0.43),
and (iv) 10-year running correlations show, however,
that covariability between Pal-LTER sea ice extent and
the SOI has decreased since the 1990s (unless the time-
series are first smoothed, dotted lines), while the longer
view provided by the Faraday/Vernadsky air tempera-
ture record shows that SOI covariability was also
stronger in the 1960s to mid-1970s in addition to the
1980s. Similar results to (iii) and (iv) are obtained
when an ENSO index (e.g. Nino3.4) is used.
Additionally, Pal-LTER sea ice extent negatively
covaries with SAM variability. However, correlations
are in general weak unless examined on a month-
to-month basis, November showing the most consist-
ent and strongest correlations (e.g. 10-year running
correlations range from K0.4 to K0.5).

Concurrent with decreased climate covariability with
Pal-LTER sea ice extent in the 1990s is increased intra-
seasonal variability in monthly sea ice extent (Smith
et al. 1998a; Smith&Stammerjohn 2001; Stammerjohn
et al. in press b). This is partially confirmed by the fact
that correlations remain higher in the 1990s when using
smoothed timeseries (dotted lines in figure 3b,d). The
increase in intraseasonal variability between the 1980s
and 1990s is captured by the degree of persistence in
monthly sea ice extent anomalies, which decreased from
12 to 13months in the 1980s to twomonths in the 1990s
(based on autocorrelation analysis). Increased intrasea-
sonal variability is largely a result of increased variability
in the timing of sea ice advance and retreat in the 1990s,
and this has direct implications for the marine
ecosystem. The life histories of most polar marine
species have evolved to be synchronized with the
seasonality of sea ice (Smith et al. 1995; Ross et al.
1996). Therefore, the marine ecosystem may be more
sensitive to changes in the seasonal timing of sea ice
advance and retreat than to overall changes in
magnitude of winter sea ice extent (Smith et al.
2003a,b), thus providing further impetus to understand
the increased variability in sea ice advance and retreat.

As indicated by figure 2, we have analysed the
variability and trends in the timing of sea ice advance
and retreat (Stammerjohn et al. 2003, in press a).
In contrast to results shown in figure 3 that were based
on monthly sea ice extent, correlations between
the timing of sea ice advance and the SOI are stronger
and markedly increase in the 1990s (RZC0.72 for



4

2

0

−2

−4

4

2

0

−2

−4

−0.2

−0.4

−0.6

−0.8

−1.0

−1.2

1.0

0.5

0.0

−0.5

−1.0

79

80 82 84 86 88 90 92 94

81 83 85 87 89 91 93 95 97 99 01 03 05

79 81 83 85 87 89 91 93 95 97 99 01 03 05

57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

year

year start of 10-year (120 month) running correlation

year start of 10-year (120 month) running correlation

year

sea ice
SAT

sea ice
SOI

unsmoothed
smoothed (5-month)

unsmoothed
smoothed (5-month)

SA
T

 v
s 

SI
E

SO
I

vs
 S

A
T

SO
I

vs
 S

IE

st
an

da
rd

 d
ev

ia
te

st
an

da
rd

 d
ev

ia
te

co
rr

el
at

io
n 

co
ef

fi
ci

en
t

co
rr

el
at

io
n 

co
ef

fi
ci

en
t

(a)

(b)

(c)

(d )

Figure 3. Monthly standard deviates (smoothed by 5-month running means) from January 1979 to December 2004. Monthly
standard deviates were determined by dividing the anomaly (for the month and year in question) by the standard deviation of the
anomaly (for the month in question). (a) Faraday/Vernadsky air temperature (dotted) and Palmer LTER sea ice extent (solid);
(b) 10-year (120 month) running correlations between unsmoothed (solid) and smoothed (dotted) time-series of
Faraday/Vernadsky air temperature and Palmer LTER sea ice extent: the smoothing was by 5-month running means;
(c) Palmer LTER sea ice extent (solid) and the Southern Oscillation Index (SOI; dotted); and (d) 10-year (120 month) running
correlations between unsmoothed (solid) and smoothed (dotted) time-series of Faraday/Vernadsky air temperature and SOI
(positive correlations from 1957 to 1995), and between unsmoothed (solid) and smoothed (dotted) time-series of Palmer LTER
sea ice extent and the SOI (negative correlations from 1979 to 1995).
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1992–2004 compared with RZC0.38 for 1979–2004).

The correlations between sea ice retreat and the SOI also

showan increase in the 1990s (RZK0.46 for 1992–2004

compared with RZK0.38 for 1979–2004) and are

somewhat weaker than for the advance but still stronger

than for monthly sea ice extent. Again, similar results are

obtained when an ENSO index (e.g. Nino3.4) is used.

These results further confirm that the high latitude

Southeast Pacific is sensitive to ENSO variability.

However, given the increased intraseasonal variability

of sea ice in theWAP region, monthly sea ice extent may

not be the best variable for examining this relationship.
Phil. Trans. R. Soc. B (2007)
As our most recent results show (Stammerjohn et al. in
press a,b), we seem to better capture sea ice sensitivity to

ENSOvariability by restrictingour focus to the periodsof

sea ice advance and retreat.

This is not surprising when given that the high-

latitude response to ENSO variability is strongest

during the austral spring–summer (especially in the

1990s due to a strengthening of the in-phase relation-

ship with SAM during spring; Fogt & Bromwich 2005).

Our studies, however, suggest that the sea ice response

to ENSO variability is still evident well into austral

autumn (Stammerjohn et al. in press a,b), given
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the high correlations we observed for sea ice advance.

This may be due in part to the ice advance being
more sensitive to climate variability than its retreat

(Stammerjohn et al. in press b). The equatorward
expansion of sea ice during advance is unconstrained

physically (no continental boundary to the immediate
north) and can quickly occur (relative to the retreat),

given the ability to rapidly vent ocean heat, especially

during cold air outbursts. In contrast, sea ice retreat is
constrained physically by incoming warm air masses,

by the physical presence of the Antarctic and also
by increasing sea ice thickness; thus more time is

needed to melt ice relative to growing ice. Further,
Stammerjohn et al. (in press a) show that the negative

impacts from individual La Nina and positive SAM

events (both associated with earlier sea ice retreats and
later sea ice advances) appear to outweigh the positive

impacts from El Niño and negative SAM events, and
thus strongly contribute to the overall trend of

decreasing winter sea ice duration.
Within the context of the rapid warming of the AP

region we summarize our current findings as follows.

The strongest trends in surface air temperature are
during midwinter months, peaking in July, with a 6.38C

increase since 1951. In contrast, the strongest trends in
sea ice are occurring during the austral spring–summer

when sea ice is retreating and during the subsequent
austral autumn when sea ice is advancing. The trend

towards a later advance and earlier retreat results in

decreased winter sea ice duration. A shorter sea ice
season implies less time for sea ice to thicken (both

thermodynamically and mechanically). An overall
thinner sea ice cover can be more mobile, thus less
Phil. Trans. R. Soc. B (2007)
concentrated and more variable (both of which have
been observed in the WAP region). Decreased winter
sea ice duration, concentration and presumably thick-
ness, are changes that would, perhaps quite dramati-
cally, increase winter ocean heat flux, both to the
overlying atmosphere through leads and other openings,
as well as to the underside of sea ice and marine glaciers
(see §3). In turn, the increased ocean heat flux would
amplify thewinter air temperature trend, the decrease in
sea ice thickness (Stammerjohn et al. in press b) and the
marine glacier retreat (Cook et al. 2005).

Therefore, the rapid warming in winter in the AP
region may largely be due to changes occurring in the
atmospheric circulation during austral spring, summer
and autumn that are negatively affecting the advance
and retreat such that winter sea ice duration, concen-
tration and thickness are decreasing, and ocean winter
heat flux is increasing.
3. PHYSICAL OCEANOGRAPHY
The most voluminous source of ocean heat and
nutrients in the Southern Ocean, Circumpolar Deep
Water (CDW), is transported by the Antarctic
Circumpolar Current (ACC). Research in the PAL-
LTER (Martinson et al. in press) and throughout the
Southern Ocean (Orsi et al. 1995) show that the
climatological southern edge or boundary of the ACC
(SBACC, defined in Orsi et al. 1995 as the southern
limit of Upper CDW (UCDW) characteristics) lies
along the continental shelf break in the WAP region. To
the north is the SACCF (the southernmost current
core of the ACC). The close proximity of the ACC to
the broad continental shelves of the WAP (including
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Figure 5. (a) Heat content (relative to freezing) of ACC slope water that has direct access to LTER grid on continental shelf,
serving as source of ocean heat on shelf (and shown in Martinson et al. (in press), to be linearly related to shelf heat flux
through 2003). A considerable jump in this heat content occurs before 1990. Specifically, Qslope averages (2.98G0.16)!
109 J mK2 for the 17 stations pre-1990 versus 40 (3.83G0.07)!109 J mK2 post-1990 stations (uncertainty in mean value
shown about horizontal means as red lines; scatter about means given by blue vertical bars). This is equivalent to a uniform
warming of the approximately 300 m thick layer by 0.78C, comparable to a jump in heat flux (according to linear
relationship between heat flux and heat content shown in Martinson et al. (in press)) of more than 3 W mK2. (b) More
directly, heat content of this water on shelf, which has been shown to be linearly related to the ocean heat flux, shows a jump
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2002 which is an unusually large outlier).
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the shelves of the Amundsen and Bellingshausen seas

at the base of the WAP to the southwest) makes this

region oceanographically unique in the Antarctic.

Fundamental to the WAP is the relationship of shelf

water masses to those of the ACC. Key water masses as

they appear in the WAP austral summer have been

analysed and discussed in detail by Martinson et al.
(in press) Gordon (1971) distinguishes between

UCDW and Lower CDW (LCDW), noting that these

are distinguished by temperature (UCDW) and salinity

(LCDW) core layer maxima; the latter is absent over

the shelf in the WAP. Martinson et al. (in press),

wishing to relate shelf waters to those delivered to the

region by the ACC, restricts the definition of UCDW to

that as it occurs in the ACC immediately offshore of the

WAP (hereafter referred to as ‘ACC-core UCDW’).

When ACC-core UCDW is swept onto the shelf,

mixing cools it to form modified UCDW (M-UCDW).

Unmodified UCDW incursions occasionally survive

short distances on the shelf (figure 4). Incursions most
Phil. Trans. R. Soc. B (2007)
consistently move onto the shelf at the northern end of

the large cross-shelf channel (Marguerite Trough) at

the 300 cross-shelf line (figures 1 and 4). Incursions of

UCDW are consistent with the dynamic topography

(circulation), indicating interactions of the ACC with

shelf bathymetry as the key physical mechanism driving

the appearance of UCDWon the shelf.

Winter water is prevalent throughout the Antarctic

polar waters. This water is formed at or very near the

freezing point—being the remnant winter mixed layer

water—but here the summer values are well above

freezing due to vertical mixing with the warmer waters

above and below (Klinck 1998; Smith et al. 1999a;
Martinson et al. in press). The most conspicuously

absent Antarctic water masses on the WAP shelf are the

low- and high-salinity shelf waters (LSSW, HSSW)

found at depth in numerous shelf locations around the

continent (Carmack 1977). These waters, near the

freezing point, with 34.6 salinity delimiting LSSW from

HSSW, are notable for their role in deep and bottom
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water formation (Gill 1973). This absence is consistent
with the notion that bottom waters do not form in the
WAP region today. LCDW is not commonly seen on
the WAP shelf.

UCDW is quickly modified (cooled by mixing) as it
moves across the shelf, cooling approximately linearly
with distance from the slope (source) of the ACC-core
UCDW. The significance of the cooling of this
relatively warm water (3–48C above the freezing
point) on the continental shelf is that the heat is passed
from the water either to the atmosphere through leads
and other openings or to the underside of ice (both sea
ice and marine glaciers) thus melting it. This is
important given the role of glacial ice melt to rising
sea level, and the ocean heat is the only source of
enough heat to melt this ice (the heat content of water is
1000 times larger than that of a comparable volume of
air at the same temperature above freezing). Recent
research in the Pal-LTER region, using two different
approaches for estimating the ocean heat flux suggests
that the heat flux from the ocean has resulted in a
substantial increase in the water temperature and
associated heat flux beginning in the 1990s (figure 5;
comparable with a number of other changes docu-
mented throughout the region for sea ice and other
climate variables, Stammerjohn et al. in press a).
Figure 5 shows that the increase in heat flux since
1990 is sufficient to cause a w0.78C warming of the
upper 300 m of the water column below the winter
mixed layer—and indicates that the warming noted by
Meredith & King (2005) extends well below the surface
layer. There was a further jump in the heat flux after
1998, with an increasing trend since then (figure 5b).
This increase is a profound change in the physical
environment and underlines the role of ocean circula-
tion as the principal driver translating climate warming
into ecosystem changes on the WAP shelf. The heat
flux is also a proxy for nutrient fluxes because UCDW
is the primary imported source of these as well as heat;
see §4a.
4. NUTRIENTS AND CARBON
(a) Nutrients and UCDW intrusions

Surface macronutrient (nitrate and phosphate)
concentrations generally persist at high levels in the
Southern Ocean as a result of three factors: high
concentrations in deep water, deep winter mixing that
resupplies the surface layer following biological
depletion, and micronutrient (iron) limitation. Nitrate
and silicate concentrations below the main pycnocline
average 33 and 95 mM, respectively, seaward of the
shelf break in the Pal-LTER study region. Occasion-
ally, in years with large phytoplankton blooms, or in
areas of large phytoplankton accumulation, surface
nitrate and phosphate may be nearly depleted. Surface
concentrations across the WAP shelf in January
(midsummer) are highly variable, ranging from near 0
to 33 mM, and from 32 to 110 mM, respectively. On
average, surface nitrate and silicate are depleted from
30 to less than 10 mM and 80 to 50 mM, respectively,
between November and February at inshore stations
near Palmer Station (figure 6).
Phil. Trans. R. Soc. B (2007)
The ACC is forced topographically to flow along the
continental shelf break of the WAP, causing intrusions
of UCDWonto the outer shelf where the flow impinges
on canyon walls (see §3). These intrusions have been
implicated as sources of nutrients for phytoplankton
over the shelf region (Prézelin et al. 2000, 2004). From
a comprehensive, multiseason, multiyear study of
nutrients, hydrography and phytoplankton community
composition throughout the WAP region including
Marguerite Bay (MB; see below), Prézelin et al. (2004)
concluded that shelf break upwelling of episodic, non-
seasonal UCDW intrusions stimulated subsurface (i.e.
below depths detected by remote sensing) diatom
growth in the outer to midshelf region. In fact,
upwelling is not necessary to bring nutrients onto the
shelf: UCDW enters above the seafloor at the shelf
break (figure 7), flooding the water column to the base
of the pycnocline. Following the entry onto the shelf,
UCDW-associated nutrients can be mixed into the
surface layer by turbulent diffusive mixing, active
erosion of the pycnocline and nutricline by surface
mixing and upward elevation of the pycnocline by
upwelling, and by active erosion of the pycnocline in
winter by mixed layer expansion associated with
destabilization following brine rejection during ice
growth. The latter two processes greatly dominate the
vertical fluxes by a factor of 4–20. Nutrient concen-
trations track temperature in the UCDW; therefore, it
is likely that increased nutrient inputs accompanied the
increase in heat flux onto the shelf since 1990 (figure 5).
This remains to be demonstrated.

Serebrennikova & Fanning (2004) investigated
nutrient variability in the MB (figure 1) region during
Southern Ocean-GLOBEC in 2001–2002. UCDW,
supplied to the shelf by intrusions of the ACC (see §3)
is characterized in this region by nitrate and silicate
concentrations of 33–36 and 80–100 mM, respectively.
They concluded from a detailed seasonal study of
water mass properties, cross-shelf sections and a
transect along the Marguerite Trough (figure 1), that
UCDW intrusions had essentially the same nutrient
concentrations as water already over the shelf, and
that UCDW was not a net source of higher nitrate or
silicate concentrations, at least in this region. In
contrast to the findings of Prézelin et al. (2004),
they suggested that UCDW intrusions resulted in
dilution, rather than enrichment of high silicate
concentrations already present over the shelf. They
further suggested that the high (greater than 100 mM)
concentrations of silicate encountered in bottom water
were caused by dissolution of opal in the bottom
sediments. The apparently conflicting results obtained
by Serebrennikova & Fanning (2004) and by Prézelin
et al. (2004) point to differences in nutrient distri-
butions, supply and dynamics between MB and the
WAP shelf to the north, and have not been resolved.

(b) Carbon cycle

Here, we focus on the roles played by theWAPmarginal
ice zone and coastal region in atmosphere–ocean CO2

exchange and particle sedimentation. These processes
are linked through the action of physical–chemical and
biological processes driving the solubility and biological
carbon pumps (Volk & Hoffert 1985; Ducklow et al.
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2001b) that transport dissolved inorganic carbon (DIC

or TCO2) as well as dissolved organic carbon (DOC)

against the vertical concentration gradient towards

long-term storage in the deep ocean (Ducklow &

McCallister 2004; Feely et al. 2001). The Southern

Ocean below 508 S, with 10% of the total ocean area, is

responsible for approximately 20% of the global ocean

CO2 uptake (0.47 of 2.2 Pg C yrK1; Takahashi et al.
2002). Polar continental shelves covered by seasonal sea

ice have been hypothesized to act as rectified (one-way)

CO2 pumps, due to the phasing of sea ice cover and

biological activity. Sea surface temperature is almost

constant near Antarctica (relative to lower-latitude

systems) and the CO2 partial pressure (pCO2) excur-

sion in seawater governing CO2 gas exchange is almost

entirely due to biological drawdown and respiration

(Takahashi et al. 2002). In nearshore areas, dilution of

seawater with high DIC by glacial meltwater with

negligible DIC is also important. Yager et al. (1995)
found that the northeast water polynya on the Green-

land Shelf was strongly undersaturated in the summer,

ice-free season. They put forward the ‘seasonal

rectification hypothesis’, stating that in marginal ice

zones, the ice-free season coincides with the main

summer period of low pCO2, when the regions act as

atmospheric sinks. At other times of the year, when

pCO2 could be well above saturation, the water is
Phil. Trans. R. Soc. B (2007)
covered by sea ice and gas exchange is prevented. In

spring, primary production may consume excess DIC

even before the ice cover recedes. Yager et al. (1995) and
Miller et al. (2002) used estimates of CO2 exchange in

the ice-free season as an annual average for air–sea gas

exchange, leading to very areal high estimates of the air

to sea flux. The Ross Sea polynya may function as such

as a sink for atmospheric CO2 because it is strongly

undersaturated in CO2 in summer in response to the

Phaeocystis bloom (Takahashi et al. 2002) and covered

by ice during the rest of the year.

Whether the WAP shelves act as rectified or

unrectified net annual CO2 sinks is not established.

The Pal-LTER grid (figure 1) has been surveyed for

DIC each January since 1993 (Carrillo et al. 2004). The

area is characterized by large spatial and temporal

variability and by the co-occurrence of various biologi-

cal (e.g. respiration and photosynthesis) and physical

(e.g. heating, cooling, ice formation and ablation,

melting, freshening and dilution) processes, all of

which make understanding and budgeting very challen-

ging. Carrillo et al. (2004) studied these variations in

detail using high spatial resolution underway mapping

of surface fCO2 and fO2 ( fZfugacity, similar to pCO2)

during cruises in January and July 1997. Different

regions of the Pal-LTER grid showed different patterns

of CO2 and O2 over- and undersaturation, resulting
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from spatial variation in dominance of physical or
biological processes. Even in summer, dissolved CO2

was near atmospheric equilibrium in some regions,
particularly offshore and towards the north part of the
grid. This pattern leads to some doubt regarding the
universality of the rectified sink hypothesis.

Positive net community production (NCP) is the
dominant biological process in the inshore areas and
especially in MB, leading to strong drawdown of DIC
and undersaturation of dissolved CO2 (pCO2!
200 p.p.m.). Serebrennikova & Fanning (2004) estim-
ated NCP from total inorganic N and Si drawdown
over the growing season. They found that NCP
estimated from net N utilization was 3.8G1.9 and
2.8G1.3 mol C mK2 yrK1 in MB in 2001 and 2002.
NCP estimated from Si utilization was 1.1 and
0.9 mol C mK2 yrK1, suggesting diatoms were respon-
sible for about 30% of the annual NCP. The estimates
for NCP in MB are comparable to the estimates made
in the hyperproductive Ross Sea by Sweeney et al.
(2000a,b; 3.9G0.9 mol C mK2 yrK1), but the range in
MB was 0.6–9.6 mol C mK2 yrK1. Figure 8 shows the
average distribution of DIC over the Pal-LTER grid for
1993–2005. Normalization of the DIC concentrations
to salinity of 35 indicates the strong dilution by glacial
Phil. Trans. R. Soc. B (2007)
meltwater in the nearshore zone. Higher concen-
trations offshore may reflect offshore inputs, and the
drawdown south of Anvers Island reveals the effects of
the phytoplankton bloom in the northern area.

(c) Dissolved organic carbon

There have been fewmeasurements of DOC in theWAP
shelf region. DOC concentrations in January range
45–50 mM, against a deepwater background concen-
tration of 39 mM (H. W. Ducklow 2005, unpublished
data). Carlson et al. (1998) showed that DOC accumu-
lation was similarly low in the Ross Sea (cf. Bermuda
summertime DOC of 60–70 mM and Hawaii, greater
than 70 mM) and suggested that Antarctic plankton
systems funnel most of the seasonal net primary
production through the particulate, not dissolved carbon
pools. This appears to be true in the WAP as well.

(d) Sedimentation

CO2 uptake in the WAP is strongly influenced by
vertical sedimentation (Karl et al. 1991b). Palmer
LTER has maintained a sediment trap moored at
64.58 S, 668 W since 1993, about 100 km from Palmer
Station in 350 m depth (trap depth 150 m) and
seaward of the Palmer Deep trough west of Anvers
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Island (figure 1). As elsewhere in Antarctic marginal ice

zones (Wefer et al. 1988; Fischer et al. 2002), particle
flux in the WAP exhibits extreme seasonality (figure 9),

with a strong peak in the summer following the ice

retreat and phytoplankton bloom (Ducklow et al.
2006). The timing of the annual sedimentation episode

is remarkably consistent but the duration, amplitude

and annual total flux all exhibit significant interannual

variability (figure 10). In particular, the annual

sedimentation varied by nearly an order of magnitude

over the 11-year observation period. The annual

sedimentation is not related to local annual primary

production. Other biological factors besides primary

production probably influence the patterns and

magnitude of sedimentation. The annual sedimen-
Phil. Trans. R. Soc. B (2007)
tation is weakly but significantly and inversely correl-

ated with krill abundance (nZ11, pZ0.012, r2Z0.51;

Ducklow et al. 2006). Annual sedimentation is also

significantly and directly correlated with salp abun-

dance but only since 1998 (nZ5, pZ0.04, r2Z0.79).

The direct relationship between sedimentation and

salp abundance is supported in the literature, which

abundantly documents the large size and rapid sinking

rates of salp pellets (Perissinotto & Pakhomov 1998).

The inverse relationship between krill abundance and

sedimentation is surprising. Krill produce large, rapidly

sinking faecal pellets, but it may be that heavier

sedimentation occurs when krill grazing is lower and

more of the phytoplankton stock sinks as ungrazed

diatoms (Smetacek & Nicol 2005), analogous to the
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prevailing condition in the Ross Sea. It is also possible
that krill fragment sinking particles (coprohexy;
coprophagy), slowing sedimentation velocities and
allowing more time for decomposition during transport
(Turner 2002). Antarctic microbial communities can
rapidly decompose faecal pellets (Povero et al. 2003).

Interannual variations in krill abundance in the
southwest Atlantic sector including the WAP are
directly related to sea ice extent (Atkinson et al.
2004), and salp abundance is inversely related to ice
retreat and the duration of ice cover (Atkinson et al.
2004; Ross et al. in press). Earlier studies (Loeb et al.
1997) established the concept of apparent variation in
the dominance of salps versus krill in the Antarctic
marine food web at the tip of the Peninsula, also tied to
sea ice variations. In a period when sea ice duration and
extent are declining rapidly along theWAP (see §2), the
composition and dynamics of Antarctic zooplankton
communities may also be changing, with only poorly
understood biogeochemical consequences.
5. PRIMARY PRODUCTION AND
PHYTOPLANKTON ECOLOGY
The classic paradigm of the Southern Ocean,
developed during the early expeditions more than 50
years ago, proposes a short food chain supported by
diatom growth (Hart 1942). Later studies showed that
nano- and picoplankton (cells less than 20 and less than
2 mm, respectively) are important components of the
planktonic community (Hewes et al. 1990; Buma et al.
1991; Jacques & Panouse 1991; Villafañe et al. 1993),
ubiquitous and dominant in oceanic waters. Large
microplankton (cells greater than 20 mm) were thus
considered rare and present only in coastal and
restricted environments (Holm-Hansen & Mitchell
1991). Expeditions during the past decade have
challenged this scenario as large diatoms are found
also associated with fronts, such as the Polar Front
(Smetacek et al. 1997) and the Southern edge of the
Polar Front in the Bellingshausen Sea or SACCF
(Savidge et al. 1995).
Phil. Trans. R. Soc. B (2007)
(a) Community composition and distribution

Diatoms and cryptomonads are the dominant taxa in
the WAP in terms of biomass (chlorophyll a or cell
carbon,Garibotti et al. 2003a).They are found inwaters
around Elephant Island (Villafañe et al. 1993), in the
Bransfield and Gerlache straits (Holm-Hansen &
Mitchell 1991; Rodriguez et al. 2002a), south of Anvers
Island (Moline & Prezelin 1996; Ross et al. 2000),
Grandidier Passage and MB (Garibotti et al. 2003b).
Small unidentified flagellates (usually less than 5 mm)
are always numerically dominant (Villafañe et al. 1993;
Rodriguez et al. 2002a; Garibotti et al. 2003a).
Phaeocystis cf. antarctica, a dominant Prymnesiophyte
in the Ross Sea, is rare as a colonial form in the shelf
waters of the WAP. It is commonly found in surface
waters of the Bellingshausen Sea and slope waters of the
WAP in late spring (Savidge et al. 1995; Bidigare et al.
1996; Rodriguez et al. 2002a) and can be dominant
inshore in the Gerlache Strait (Rodriguez et al. 2002a)
and MB (Vernet & Kozlowski 2001). Phaeocystis cf.
antarctica often cooccurs with large microplanktonic
diatoms and Pyramimonas sp. (Rodriguez et al. 2002b;
Garibotti et al. 2003b).

Species distribution and community composition
are tightly correlated with water masses, fronts and the
ice edge. Large diatoms dominate frontal areas and at
the ice edge, many times in combination with
P. antarctica (Huntley et al. 1991; Prézelin et al. 2000;
Anadon & Estrada 2002; Garibotti et al. 2003b). This
community has a high rate of sedimentation (Anadon
et al. 2002). Cryptomonads are frequently abundant
after diatom blooms (Moline & Prezelin 1996); this is
attributed to the presence of a well stratified water
column, sometimes originating from glacial melt
(Moline et al. 2004).

The seasonal progression, either associated with sea
ice retreat, or marked by a spring bloom or a frontal
bloom, is identified by the replacement of a diatom-
dominated community by a flagellate or cryptomonad-
dominated community. Coastal waters in the summer
(January) are characterized by cryptomonads in the
area south of Anvers Island, by microflagellates in the
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Grandidier Passage and by large chain-forming
diatoms in Crystal Sound and MB. These assemblages
are interpreted as late summer communities in the
north, dominated by flagellates, and early ice edge
communities in the south (Garibotti et al. 2003b). The
transition from diatoms to flagellates has been attrib-
uted to sedimentation (Castro et al. 2002), advection
(Moline & Prezelin 1996) and grazing (Garibotti et al.
2003b). Modelling indicates that if diatoms are the
preferred food for krill (Haberman et al. 2003a) and
young of krill (Ross et al. 2000), diatom communities
initiated at the ice edge will transition to cryptomonads
(Walsh et al. 2001).

Sea ice communities are characterized by similar
composition as water column communities. Diatoms,
flagellates and the colonial form of P. cf. antarctica are
cited as more abundant, indicating a tight coupling
between ice and water column, presumably by seeding
of the water column during spring sea ice retreat
(Ackley & Sullivan 1994) and during particle entrain-
ment during sea ice formation in the autumn(Garrison&
Mathot 1996). Different from other parts of Antarctica,
sea ice communities in the WAP are characterized by
infiltration (Arrigo et al. 1997; Massom et al. 2006).
Flooding of sea ice at the layer between ice and snow
replenishes nutrients and brings in cells from the water
column. Once seeded, these communities grow. The
layering of chlorophyll a in the ice is interpreted as
remnants of successive flooding events (Massom et al.
in press).

(b) Biomass and primary productivity

Primary production in the WAP presents a strong
seasonal component dominated by day length. Phyto-
plankton growth in the water column, after sea ice
ablation, starts as early as October and continues
through early autumn (March/April; Moline & Prezelin
1996; Smith et al. 1998b, 2001). In coastal waters off
Palmer Station, primary production averages
176 g C mK2 over the growing season (range
47–351 g C mK2 seasonK1). This is same as the annual
primary production measured by similar techniques
(14C incorporation) at subtropical sites like Bermuda
and Hawaii, but is achieved in half the time. Similar
seasonal production was observed in other ice edge
areas of Antarctica, such as the Ross Sea in 1996–95
season (168 g C mK2 seasonK1; Smith et al. 2000).
Primary production is closely correlated to phytoplank-
ton biomass expressed as chlorophyll a (Dierssen &
Smith 2000) such that biomass can represent
production as well.

Oceanographic fronts, water masses and the ice edge
are also themain contributors to spatial heterogeneity in
biomass and primary production. The waters seaward
of the shelf break (roughly 200–400 km from the coast)
often display the highest spring phytoplankton biomass
observed in theWAP, are seasonally swept by sea ice and
are influenced by the SACCF (figure 11). Frontal
blooms have been reported in theBellingshausen Sea off
Bransfield Strait (Smith et al. 1992; Savidge et al. 1995;
Lorenzo et al. 2002) as well as further south (Smith et al.
in press b). However, these blooms decline rapidly
(several weeks) and only seldom are they followed by
elevated values during the summer/autumn period. As
Phil. Trans. R. Soc. B (2007)
the season progresses, the frontal bloom becomes
subsurface and it is seen as a chlorophyll maximum
over the slope off King George Island (Holm-Hansen
et al. 2004), theBransfield Strait (Castro et al. 2002) and
Anvers Island (Garibotti et al. 2005a). The subsurface
maximum is dominated by diatoms and it is believed to
be an important feature for maintaining seasonal
production in slope waters (Prézelin et al. 2000, 2004).

Biomass and primary production in the region over
the shelf generally peak later in the season (December
to January) and often show subsequent summer and/or
autumn blooms, providing a more continuous source of
food from late spring to autumn for the grazers
(figure 11). These shelf waters show greater variability
in the seasonal timing of peak values, with typically
elevated biomass and production over a longer period,
giving rise to higher integrated seasonal values. As the
season progresses, shelf waters present a strong cross
shelf gradient with higher production inshore
(figure 12), as expected in coastal regions. These
gradients are present in summer but not earlier in the
season (figure 11). Large biomass accumulates in areas
with shallow mixed layer depth (Mitchell & Holm-
Hansen 1991; Garibotti et al. 2005b) and the associated
stratification from sea ice melting (Smith & Nelson
1985), which are presumably protected from high
winds. The decrease in biomass and production
gradient is associated with a distinct change in vertical
distribution. Other factors identified as key in main-
taining high levels of primary production are topo-
graphy-induced upwelling, as observed in 1993 at mid
shelf south of Anvers Island (Prézelin et al. 2000, 2004)
and stratification in late summer by freshwater input
from glacier melt (Dierssen et al. 2002).

Bloom demise has been attributed to several
environmental and biological factors, although few
studies have investigated the process (Savidge et al.
1995; Anadon & Estrada 2002). In frontal areas,
biomass decrease can partly be attributed to the
consumption of micronutrients, such as iron (Smith
et al. in press b). At this time, a subsurface chlorophyll
maximum is developed, and can be found between 40
and 80 m depth. Similarly, micronutrient limitation in
surface waters after an ice edge bloom can evolve into
a subsurface chlorophyll maximum. In both cases, the
presence of a subsurface front, such as the SACCF, is
necessary to maintain the chlorophyll maximum in
slope waters (Garibotti et al. 2003a). The dominance
of diatoms at the chlorophyll maximum further
supports the notion of the SACCF as a source of
fresh injection of micronutrients. As mentioned
above, advection or intense mixing due to storms
can remove coastal blooms (Moline & Prezelin 1996).
On average, approximately 25% of the seasonal
primary production is removed from the mixed layer
(Karl et al. 1991b; Anadon et al. 2002) mainly by
macrozooplankton grazers such as krill and salps
(Ross et al. 1998).

Summer sea ice production in the WAP is low as
multiyear sea ice is restricted to areas south of MB and
the Amundsen Sea. No field studies have sampled
south of Alexander Island. Remote sensing suggests
first year sea ice to be the most productive. Average ice
production rates are 4.4 g C mK2 seasonK1 (from
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October to April, Arrigo et al. 1997) or 2.5% of the

seasonal production off Palmer Station, well below the

expected 10% of the annual primary production

(Legendre et al. 1992). Summer ice production is

limited by nutrients while light is the main limitant at

other times (Fritsen et al. 1998). Most of the

production is attributed to diatoms (Prezelin et al.
1998) although flagellates and P. cf. antarctica are also

abundant (Massom et al. 2006).
Phil. Trans. R. Soc. B (2007)
6. MICROBIAL ECOLOGY
As in other marine systems (Ducklow 1999, 2000),

bacterioplankton in Antarctic waters principally pro-

cess dissolved organic matter (DOM), derived ulti-

mately from phytoplankton production. Bacteria

complete the microbial loop by converting the DOM

into biomass, then being consumed by protozoan

bacteriovores (Karl 1993; Karl et al. 1996). In the

WAP, heterotrophic prokaryote stocks contain a
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significant portion of planktonic Archaea (Massana
et al. 1998; Murray et al. 1998, 1999; Church et al.
2003), but as yet these organisms remain uncultivated
and we do not know their modes of nutrition, metabolic
and trophic status or roles in the plankton system. It is
not yet even clear if they are autotrophs or hetero-
trophs. Church et al. (2003) showed seasonal and
depth-related variations in the relative and absolute
abundances of Archaea versus Bacteria in the LTER
grid region (figure 13) with a greater proportion of the
Archaea in deeper waters and during the winter. The
Archaea increased in absolute abundance by approxi-
mately 40% from summer to winter in WAP surface
waters, and also varied at depth, suggesting a dynamic
and active population.

Total prokaryote (hereafter ‘bacteria’, including
varying proportions ofArchaea, with unknownmetabolic
identities; and heterotrophic Bacteria) abundance is
greater in the summer than winter, but does not vary as
conspicuously as in theRossSea,wherebacterioplankton
undergo an annual bloom (Ducklow et al. 2001a). Total
abundance is generally less than 108 cells lK1 in winter
(July) and reaches to about 109 cells lK1 in January
(Church et al. 2003), that is, about the same range as in
the temperate North Atlantic, but less than in the Ross
Sea (Ducklow et al. 2001a).

Bacteria in Antarctic coastal waters must ultimately
depend on phytoplankton production for organic
matter (there are no terrestrial inputs of organic
Phil. Trans. R. Soc. B (2007)
matter), so in some sense the two groups must be
coupled by material flows in the plankton food web. In
the RACER project, Karl and colleagues (Bird & Karl
1991, 1999; Karl et al. 1991a) carried out intensive
seasonal (summer, December–March 1987; spring,
November 1989) investigations of microbial processes
in the northern AP and Drake Passage. They observed
that bacteria were not correlated with chlorophyll
during the spring phytoplankton bloom in the Gerlache
Strait, with no bacterial response to increased chloro-
phyll greater than 2.5 mg lK1 (Bird & Karl 1999).
Bacterial biomass was less than 2% of the total
plankton biomass and bacterial production (BP) was
approximately 3% of the co-occurring primary pro-
duction (PP). They concluded that the bacterial
response to the diatom bloom was suppressed by
heterotrophic nanoplankton (HNAN) populations that
consumed growing bacteria as the phytoplankton
bloomed, and kept BP : PP low (see below), i.e. the
HNAN exerted top-down control. Bird and Karl
concluded that at least in their study area and during
the spring bloom period, the microbial loop was
uncoupled from primary producers, but they added
that the uncoupling was not necessarily more wide-
spread in space and time, and could be expressed more
strongly in other seasons.

Bird & Karl (1999) diagnosed top-down control by
computing the ratio of bacterial cells per individual
HNAN in the standing stock of plankton samples
taken at various times of the bloom cycle. Figure 14
reproduces the observations of Bird & Karl (1999)
along with observations from the Ross Sea polynya.
There were only about 100 bacteria per HNAN in the
Gerlache Straits, and an order magnitude more in the
Ross Sea over the full growth season. There were
consistently fewer HNAN available to graze on
bacterial cells in the Ross Sea than in the Gerlache
Strait. The bacteria : HNAN ratio approached 10 000
in some samples in the Ross Sea. The striking contrast
in predator–prey ratios between the two regions
suggests fundamental differences in food-web
structure. For example, the notable release of bacteria
from predation by HNAN in the Ross Sea suggests that
the bacteriovores (HNAN) are more heavily preyed
upon than in the WAP region. In general, there are
fewer krill in the central Ross Sea, an observation not
consistent with the trophic cascade hypothesis. Salps
or other mucus net feeders like pteropods could exert
such top-down control on HNAN and initiate a
trophic cascade favouring bacteria. The idea has not
been tested.

Moran and colleagues studied phytoplankton–
bacteria coupling in the Bransfield Strait (Moran
et al. 2001, 2002). They provided a clear operational
definition of phytoplankton–bacteria coupling by
focusing specifically on the release of recently syn-
thesized DOC from active phytoplankton (14% of total
particulate plus dissolved primary production). In a
series of carefully analysed time-series experiments,
they showed that the released DOC met the metabolic
requirement of bacteria in the same region studied in
RACER and concluded that bacteria and phytoplank-
ton were strongly coupled. They also concluded that
BP was a very low fraction (mean 1.5G0.4%) of the
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total particulate plus dissolved production but termed
the coupling ‘strong’ nonetheless.

Better understanding of the couplings and
mechanisms of bacterial population dynamics will
come when we can delve more specifically into the
ecology of individual bacterial groups. This is now
possible using a new battery of genomic approaches
(Clark et al. 2004; Peck et al. in press). A. E. Murray
(2005, personal communication) studied the annual
cycle of bacterial community composition at an inshore
site at Palmer Station in 2001–2002 using denaturing
gradient gel electrophoresis (DGGE) of planktonic
DNA. He observed different bacterial groups with
distinctive seasonal distribution patterns. For example,
a Polaribacter sp. constituted 20% of the total DGGE
signal in winter (June–October) but less than 10% in
December–January. In contrast, a Roseobacter sp.
increased its apparent abundance by an order of
magnitude in December–March. The crude reflections
of population dynamics we see now by monitoring the
total abundance are the net result of such species
changes in response to similar complexity in DOM and
nutrient availability caused by the interplay of physical
forcing and plankton dynamics.
7. KRILL AND OTHER ZOOPLANKTON
(a) Zooplankton assemblages

Zooplankton, particularly those greater than 0.2 mm in
length, provide the main trophic link between primary
producers and apex predators in the Southern Ocean.
Beginning with Macintosh (1936) and the Discovery
expeditions, zooplankton assemblages in the Southern
Ocean have been broadly associated with different
water masses with different sea ice influences—the
northern ‘oceanic’ zone with warm-water species, a
zone with cold-water species influenced by seasonal
pack ice, and a cold continental shelf zone close to the
continent associated with permanent summer ice. Sea
ice plays a role in the development of the distribution
pattern of zooplankton because the marginal ice zone
acts both as a frontal system with enhanced primary
production and a delimiter of cold surface water.
Phil. Trans. R. Soc. B (2007)
The waters west of the AP belong primarily to the

seasonal pack-ice zone, but also contain species

from other assemblages (Schnack-Schiel & Mujica

1994). Copepods and euphausiids, and in some

years salps, dominate the zooplankton assemblages in

the AP region. These major macroherbivores are

often spatially segregated (Voronina 1998). In a recent

large-scale study of the southwest Atlantic that

extended partway down the AP (Ward et al. 2004),

the relative numbers of copepods, euphausiids and

salps varied depending on the distribution of ice-

influenced water. In more oceanic realms that were

relatively ice-free, copepods were orders of magnitude

more abundant than in colder waters influenced by

sea ice, particularly south of the SBACC. South of

the SACCF, abundance of both salps and Antarctic

krill doubled (Ward et al. 2004). In waters closer to the

AP where schools of krill occur, the biomass

of Antarctic krill is often higher than that of the

copepods (Brinton & Antezana 1984; Hopkins 1985).

Taxonomic groups other than copepods, euphausiids

and salps (such as polychaetes, chaetognaths, ptero-

pods) contribute only a small per cent (less than 10%)

to the zooplankton biomass in the AP region

(Schnack-Schiel & Mujica 1994).

Both oceanic (generally warmer water with depths

greater than 2000 m) and neritic (shelf break and

slope) zooplankton assemblages occur in the Pal-LTER

study region (Siegel & Piatkowski 1990; Smith &

Schnack-Schiel 1990). Both the oceanic and neritic

assemblages occur in varying mixes year to year with no

clear boundaries between zones. The oceanic assem-

blage inhabits the seaward edge of the study region, and

includes herbivorous copepods, salps (Salpa thompsoni )
and tomopterid polychaetes, whereas the neritic

assemblage includes several species of euphausiids,

including Antarctic krill (E. superba) and Thysanöessa
macrura, and the herbivorous shelled pteropod,

Limacina helicina. Close to the continent, usually in

waters shallower than 350 m, two species (larval

Antarctic silverfish, Pleuragramma antarcticum, and the

ice krill, Euphausia crystallorophias) are generally
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considered indicator species for a zone of cold
continental shelf water (Smith& Schnack-Schiel 1990).

Salps and Antarctic krill often dominate the total
zooplankton biomass, accounting for over 50% of the
volume in 62% of the tows conducted in summers
1993–2004, and for over 70% in 48% of the same tows.
Catches varied in the presence or absence of krill and
salps: 45% contained both krill and salps; 45%, krill
and no salps; 4%, salps and no krill; and 3.3%, neither
species. This large spatial scale co-occurrence of salps
and Antarctic krill is not common. In most other
regions there is a relatively distinct demarcation in the
habitats of these two species (Loeb et al. 1997;
Voronina 1998; Nicol et al. 2000; Atkinson et al.
2004), although in the recent large scale CCAMLR
(Commission for the Conservation of Antarctic Marine
Living Resources) 2000 study in the southwest
Atlantic, considerable overlap was also found in the
distributions of the two species (Kawaguchi et al.
2004). West of the AP, the SBACC comes closer to the
shelf break than in most of the Southern Ocean, which
may foster the mixing of the two assemblages.

(b) Trends or cycles

Some evidence exists for trends and/or cycles in
zooplankton abundance, specifically salps and Antarc-
tic krill. Atkinson et al. (2004), in a study of net tow
data from around the Southern Ocean, suggested that
salps increased and Antarctic krill decreased in the
southwest Atlantic between 1976 and 2004. Smaller-
scale (both time and space) studies of zooplankton west
of the AP support the increase in salp numbers at the
tip of the peninsula (Loeb et al. 1997) and in the Pal-
LTER region (Ross et al. in press). For example,
between 1993 and 1998 there were only 2 years with
abundances of salps above the long-term mean on the
mid-grid and southern shelf. However, from 1999 to
the present, abundances have been above the long-term
mean in most regions, suggesting that there has been a
distinct shift in the frequency of occurrence of salps
across the entire Palmer Shelf (Ross et al. in press).
This shift is consistent with the observation of
Pakhomov et al. (2002) that during the past two
decades the region of dense concentrations of
S. thompsoni has extended southwards to approximately
658 S, i.e. the latitude of the most northern transect line
of the Palmer summer study region. Confirmation of
the trend found by Atkinson et al. (2004) for Antarctic
krill is more problematic (Smetacek &Nicol 2005). For
example, a shorter acoustic time-series from the
northern tip of the AP shows different patterns than
the net-tow time-series (Hewitt et al. 2003). Some of
the difficulties with studying trends in Antarctic krill are
technical (patchiness, net avoidance, acoustic calibra-
tions, etc.), but others lie in attempting to detect a
linear trend in a species with a cycle in population
abundance due to variability in recruitment (Siegel &
Loeb 1995; Quetin & Ross 2003).

Fewer studies have investigated trends in other
zooplankton species. In the Pal-LTER region, abun-
dance and distribution of the two indicator species for
cold continental shelf water (larvae of Antarctic
silverfish and ice krill) have shown different patterns
over the past 12 years. For larval Antarctic silverfish,
Phil. Trans. R. Soc. B (2007)
abundance at the northern coastal stations decreased
dramatically between 1997 and 1998, and none have
been found at those stations since 1999. However,
abundance of larval Antarctic silverfish at the southern
coastal stations remained about the same throughout
the time-series. The distribution and abundance of the
ice krill, E. crystallorophias, has not shown any long-
term trends, but is correlated in time and space with the
day of ice retreat (Ross et al. in press), and thus would
be expected to change if the trend in the day of retreat
continues.

(c) Antarctic krill as a key species

Historically, Antarctic krill have been studied far
more extensively than other Southern Ocean zoo-
plankton (Huntley et al. 1991; El-Sayed 1994;
Hofmann et al. 2004). Antarctic krill occupy a key
position in the ecosystem, as they are both an
important prey item for many of the seabirds and
mammals in the region (Everson 2000), and a
dominant grazer, particularly of the larger phyto-
plankton (Ross et al. 1998; Garibotti et al. 2003a),
and produce fast-sinking faecal pellets that contribute
to carbon flux. Studies have also been conducted to
gather data on both Antarctic krill and the ecology of
the ‘krill-based ecosystem’ (Watkins et al. 2004) to
help in the management of its stocks by CCAMLR
(Hewitt et al. 2004). Two long-term studies have
been established in the waters west of the AP: initially
the Antarctic Marine Living Resources (AMLR)
programme was primarily sited at the tip of the AP,
but it now currently includes prey and oceanography
studies ranging from the tip of the peninsula through
Bransfield Strait and outside the South Shetland
Islands; the Pal-LTER study region is to the south of
the AMLR study region in an area with comparatively
little historical research on the zooplankton commu-
nity. Shelf areas east and west of the AP have been
suggested as the source region for populations of
larvae and young krill for the high krill biomass
regions in the Scotia Sea and its surrounding shelf
areas with many of the major predator colonies of
the Southern Ocean (Croxall et al. 1988; Murphy
et al. 2004).

(d) Interface with primary production

Historically, concentrations of Antarctic krill are
coherent with phytoplankton concentrations at rela-
tively long length-scales, but not coherent at length-
scales below about 20 km (Weber & El-Sayed 1986).
Within the Pal-LTER study region, north/south and
on/offshore gradients in primary production are
reflected in the gradients in abundance of Antarctic
krill. Krill abundance is generally higher at inner shelf
stations than offshore, and higher in the north than the
south in January (figure 15, cf. figure 12). The same
distribution will not hold in the autumn and winter
when Antarctic krill are concentrated inshore at inner
shelf stations and in the fjords (Siegel 1988; Ross et al.
1996; Lascara et al. 1999; Ashjian et al. 2004; Lawson
et al. 2004). The main difference between the gradients
for primary production and Antarctic krill abundance
is the decrease in abundance at the innermost stations
of the 200 line for krill compared to a continuing
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increase for primary production. What possible
mechanism could underlie this difference? One possi-
bility to explore is the role of phytoplankton commu-
nity composition in controlling the distribution of krill.
Adult Antarctic krill are known to select for diatoms
when given mixtures of diatoms and prymnesiophytes
or diatoms and cryptomonads (Haberman et al.
2003a,b). Higher growth rates of young krill in the
field were also observed when phytoplankton commu-
nities were dominated by diatoms and not prymnesio-
phytes (Ross et al. 2000). Reproduction was also
correlated with measures of primary production. The
per cent of female krill reproducing during the
reproductive season varied between 10 and 90% in
the first 7 years of the Pal-LTER sampling, and was
significantly correlated with annual primary pro-
duction (Quetin & Ross 2001). Thus, krill are selective
grazers, and potentially select the location with the
most desirable phytoplankton community.
(e) Interface with seasonal sea ice

The concept that Antarctic krill populations are tightly
coupled to seasonal sea ice dynamics stems from early
observations that the distribution of Antarctic krill was
coherent with the region affected by the seasonal
advance and retreat of sea ice (Marr 1962; Laws
1985). Based on behavioural and physiological evi-
dence from research in the 1980s (Daly 1990;
Smetacek et al. 1990; Ross & Quetin 1991; Quetin
et al. 1996), the initial LTER hypotheses regarding
recruitment in Antarctic krill addressed the interaction
of krill with seasonal sea ice both during the first winter
for the larvae (a critical period, Ross & Quetin 1991)
and during the austral spring prior to spawning. The
potential mechanisms underlying interannual variabil-
ity in recruitment success included, (i) higher young-
of-the-year survival after winters of heavy sea ice extent
because the under-ice habitat with its resident sea ice
microbial communities plays an important role in
winter growth rates and, potentially, survival of larval
krill and (ii) higher reproductive effort (the number of
Phil. Trans. R. Soc. B (2007)
larvae produced) after a spring of high sea ice extent
based on the assumption that food levels in the austral
spring and in the summer (when the ovary is
developing and the oocytes mature prior to spawning)
will determine reproductive output, and that the food
levels are partly determined by seasonal sea ice
dynamics. These hypotheses have expanded to include
the dynamics of the sea ice cycle, the consequences of
the warming trend west of the AP, and teleconnections
to the rest of the world’s ocean. The rapidly changing
climate in the region west of the AP, including delay in
the timing of advance of seasonal sea ice and decrease
in the extent of summer sea ice (see §2b), suggest that
krill, and in particular krill recruitment, may be a key
indicator of interactions between climate change or
migration and ecosystem response, including potential
changes in the classical diatom–krill–higher predator
food web.
(f ) Time-series of recruitment success

The time-series data from both AMLR and the Pal-
LTER have been analysed for recruitment success
(Siegel & Loeb 1995; Siegel et al. 1998, 2002; Quetin &
Ross 2003). Recruitment success (R1, the proportion
of the total population that is AC1 or 1 year old in
January) is episodic in these long-lived animals. Two
sequential successful year classes (YCs) have domi-
nated the 5–6 year cycles in the Pal-LTER region, with
strong YCs in 1990 and 1991, 1995 and 1996, and
2001 and 2002 (figure 16) (Quetin & Ross 2003). At
the northern tip of the AP strong YCs have tended to
occur only once every 5–6 years (Siegel et al. 2003).
Basin-scale linkages and interactions are important to
understanding the structure of the circumpolar eco-
system. Given the established linkage between sea-ice
and the SOI (see §2c), recruitment success might also
be linked to a seasonal index of ENSO that would
summarize all times relevant to the life cycle of krill, i.e.
spring (reproduction) through winter (larval survival).
A correlation with the absolute value of summed
ENSO seasonal rankings (Quetin & Ross 2003;
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recruitment index (R1) and the absolute value of a seasonal
index of the ENSO cycle based on the three months running
mean of ERSST.v2 SSTanomalies (1971–2000 base period)
in the Nino3.4 region. See http://www.cpc.ncep.noaa.gov/
products/analysis_monitoring/ensostuff/ensoyears.html. The
temperature anomalies were used to categorize three-month
periods (JFM, AMJ, JAS and OND) as neutral (0) or as a
strong (3), moderate (2) or weak (1). Sequential spring,
summer (spawning), autumn and winter indices were
summed. Open circles are dominated by El Niño and filled
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Quetin & Ross (2003). R2Z0.775.
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Figure 16. Time-series of recruitment index (R1, filled circles, solid line) and abundance of AC1s (open circles, dashed line)
calculated from length-frequency distributions of Euphausia superba with the maximum likelihood fitting procedure of de la
Mare (1994) as used in the program CMIX. Krill were sampled in the full summer Pal-LTER study region in January of the
years 1993–2004, and in a restricted sampling region in November 1991. The year class is identified from the year of the January
of the spawning season. Series extended from that presented in Quetin & Ross (2003). The two estimates of R1 for year class
1990 and 1991 were estimated either from R2 (YC1990) or from a restricted sampling region (YC1991). Strong year classes are
denoted either by high R1s (greater than 0.4) and/or high abundance of AC1s (greater than 40!1000 mK3).
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figure 17) suggests that recruitment success is depen-
dent on moderate, not extreme, ENSO conditions, and
in turn more average sea ice conditions.

Predicting the effects of climate warming on krill
populations is complex. Cycles in krill abundance,
intensity of reproduction and recruitment success are
correlated with different aspects of sea ice. Unlike the
northern AP, the optimal conditions in the mid-AP
region appear to be the mean conditions, not the
extremes (Siegel & Loeb 1995; Loeb et al. 1997;
Quetin & Ross 2003). Thus, in the Pal-LTER study
region (figure 1), conditions similar to the 23-year
average of sea ice extent in spring were best for
reproductive output of the population (Quetin & Ross
2001), and a pattern of sea ice advance and retreat
similar to or greater than the climatological mean for
five months or longer was correlated with good
overwinter survival of the larvae (Quetin & Ross
2003). Thus, deviations from average conditions in
the timing, duration and extent of sea ice will adversely
impact krill recruitment and ultimately availability to
predators. In the WAP region, ice advance is becoming
later in the autumn and the duration of summer ice is
decreasing (Smith & Stammerjohn 2001). Both these
changes will adversely impact the winter-over survival
of the larvae and the reproductive output of female krill,
leading to predictions that if those trends in the sea ice
persist, regional abundance of krill will decline in the
future.
8. PENGUINS
The western AP region harbours breeding populations
of five of the world’s 17 recognized penguin species
(Williams 1995). Among these, emperor (Apdenodytes
forsteri) and Adélie (Pygoscelis adeliae) penguins are
considered true Antarctic species, and exhibit life
histories that are closely linked to the presence of sea
ice (Fraser et al. 1992; Williams 1995; Ainley 2002).
The three remaining penguins, gentoo (Pygoscelis
papua), chinstrap (P. antarctica) and macaroni
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(Eudyptes chrysolophus) are regarded as sub-Antarctic
species, with life histories that are characterized by ice
avoidance (Fraser et al. 1992; Williams 1995).
Although the historical record indicates that emperor
and macaroni penguins were never abundant in the
WAP (less than a few hundred breeding pairs of each),
the combined total population of the three other
species numbers close to 1.5 million breeding pairs
(Woehler 1993; Fraser & Trivelpiece 1996).
The dominant component of WAP regional avian
biomass is thus represented by the populations of
these three penguin species, an axiom that holds true

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.html
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.html
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Figure 18. Population trends for three penguin species in the Anvers Island vicinity, 1975–2003. The numbers on the graph
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even in winter due to their propensity to remain

associated with their preferred polar or subpolar

habitats (Fraser et al. 1992; Fraser & Trivelpiece 1996).

Penguins in the WAP are important top consumers

of marine resources, a trophic position they also hold in

virtually all sectors of Antarctica due to their relatively

high abundances and clear dominance of local and

regional avian biomass. However, unlike the situation

in other regions of Antarctica, and particularly in the

case of Adélie penguins, their diets are almost

exclusively represented by one prey species, E. superba,
the Antarctic krill (Volkman et al. 1980; Ainley 2002;

Fraser & Hofmann 2003). Due to their local

abundance in the Palmer Station area, accessibility of

their colonies and their affinity for winter sea ice, Adélie

penguins were selected as the focal top predator at the

inception of Pal-LTER research programme (Smith

et al. 1995). As the LTER matured, the two ice

intolerant species, gentoo and chinstrap penguins, were

added, although detailed research on these two species

lags the effort on Adélies.

As mobile, long-lived, upper-trophic level predators,

penguins and other seabirds integrate the effects of

variability in aspects of the physical and biological

environment over large spatial and temporal scales

(Fraser & Trivelpiece 1996). As indicated previously,

the marine environment of the WAP is experiencing

some of the most rapid and significant warming on

Earth, with the loss of sea ice perhaps representing one

of the most dramatic manifestations of change in a key

physical variable (figure 2). Research on penguins

whose life histories exhibit opposing affinities to sea ice

not surprisingly provided some of the first evidence

linking these changes in the physical environment to

the biological responses of top predators (Fraser et al.
1992). More importantly, this research established the

importance of understanding the role of life-history

strategies within the context of the overall marine

ecosystem response to climate variability. This focus

underpins the formulation of hypotheses that guide the

design of experiments and the interpretation of all

aspects of the Pal-LTER penguin data (Fraser &

Trivelpiece 1996; Fraser & Patterson 1997; Smith
Phil. Trans. R. Soc. B (2007)
et al. 1999; Fraser & Hofmann 2003; Patterson et al.
2003).

One of the mechanisms by which climate warming
induces change in ecosystem structure and function is
by disrupting the evolved life-history strategies of key
component species (Rhodes & Odum 1996). Certainly
one of the most striking trends observed in the penguin
population data is the change in community compo-
sition during the past three decades as ice-dependent
Adélie penguins have decreased and ice-intolerant
chinstrap and gentoo penguins have increased
(figure 18). Indeed, the latter are the product of
founder populations only recently established (1976
and 1994, respectively), and which may signal a unique
event in the Palmer Station area given paleoecological
evidence indicating that these two sub-Antarctic
species have not been present locally for at least the
past 700 years (Emslie et al. 1998). This implies that
the environmental conditions promoting these popu-
lation increases are unprecedented within the temporal
limits of this record.

Although the precise causal mechanisms associated
with these population trends remain equivocal (Fraser&
Trivelpiece 1996), analyses focused especially on the
longer-term Adélie penguin data suggest that
interactions between at least two scales of processes,
local and regional, that can be linked directly to the
effects of rapid climate warming. As previously
intimated, and particularly in view of recent analyses
of several WAP penguin populations (Woehler et al.
2001), there is wide concurrence that regional-scale
trends are forced by a gradual decrease in the
availability of winter sea ice (Fraser et al. 1992).
However, based on work at Palmer Station specifically,
a more local source of population forcing has also been
identified. This appears to be related to increasing
snow precipitation in theWAP (Thompson et al. 1994),
which affects Adélie penguin colonies breeding on
landscapes where snow accumulations are enhanced by
landscape aspect and prevailing winds during spring
storms. These colonies have over the past 30 years
decreased significantly faster than colonies where wind-
scour abates snow accumulations (Fraser & Patterson
1997; Patterson et al. 2003). Interestingly, Palmer
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populations of the ice-intolerant chinstrap and gentoo
penguins have maintained their sub-Antarctic breeding
chronologies (Williams 1995); hence by breeding
approximately three weeks later than Adélies, chinstrap
and gentoo penguins in effect permit spring melt to
circumvent the negative effects of snow accumulation.

These two scales of processes operate by producing a
spatial and/or temporal mismatch between needed
resources and critical aspects of a species’ life history.
What remains a key challenge, however, is integrating a
food web perspective within the context of this
dynamics. Changes in the abundance and availability
of prey must surely have a role in altering the threshold
states that lead to optimal habitat conditions for one
species but suboptimal conditions for another (Fraser
et al. 1992; Fraser & Trivelpiece 1996), yet integrating
these factors into a model in which sea ice seems quite
well established as a key determinant of changes in
predator populations has been problematic (Smith
et al. 1999). Palmer Station Adélie penguin responses
to changes in krill abundance are temporally coherent
with those of other krill-dependent predators over
spatial scales that include the northern WAP and much
of the southwest Atlantic sector of the Southern Ocean
(Fraser & Hofmann 2003). The response variables,
moreover, are diverse, encompassing a range of factors
from changes in foraging trip durations to population
trajectories, and involve other predator groups besides
penguins. A key conclusion to be drawn from these
findings, given the large spatial scales over which
changes in krill abundance affect predator responses,
is that the causal mechanisms that determine how the
presence or absence of sea ice tips the balance in favour
of one life-history strategy over another may actually
operate over much smaller scales than previously
thought. These scales may encompass, for example,
the factors that determine access to breeding sites or
traditional wintering areas (Fraser & Trivelpiece 1996),
and incorporate predator responses that result from
species-specific competitive abilities for local prey
resources (Lynnes et al. 2002, 2004). Continuing
Pal-LTER research on penguins is currently starting
to focus on the possible relevance of these small-scale
processes within the scope of understanding regional
demographic responses to climate change.
9. MARINE MAMMALS
The marine mammals of the WAP include five
pinniped species and at least nine species of cetaceans.
Although these megafauna are one of the most
conspicuous features of the WAP marine ecosystem,
they are also among the least well known, a charac-
teristic that holds true for the Antarctic in general.
Indeed, it is probably not even possible to give firm
order-of-magnitude estimates of standing stocks of any
of these organisms along the WAP (Costa & Crocker
1996), a region where survey and other basic data are
still addressing the possible presence of new species and
new populations of known species (Pitman & Ensor
2003; Sirovic et al. 2004).

Not unlike the penguins previously discussed, both
the pinnipeds and cetaceans are composed of species
whose life histories also exhibit varying affinities to sea
Phil. Trans. R. Soc. B (2007)
ice. Thus, the pack ice seals, crabeater (Lobodon
carcinophagus), Weddell (Leptonychotes weddellii), leo-
pard (Hydrurga leptonyx) and Ross (Ommatophoca
rossii ), are ice-obligate species whose distribution,

abundance, reproduction and foraging ecology are
closely tied to the presence of sea ice, while southern

elephant (Mirounga leonina) and fur (Arctocephalus
gazella) seals tend to winter and forage in open

water and marginal ice zones, but reproduce on
land (Costa & Crocker 1996; Burns et al. 2004; Gales

et al. 2004). Among cetaceans, minke (Balaenoptera
bonaerensis) and killer (Orcinus orca) whales exhibit life
histories with affinities to sea ice, while the other known

species tend to be ice-avoiding, feeding in the WAP
during the summer, but migrating north during austral

winter to reproduce (Bonner 1998; Pitman & Ensor

2003; Sirovic et al. 2004).
What seems most clear about the role of the WAP

in the ecology of these marine mammals is its
significance as a feeding ground. Apart from the

ice-dependent species that are tied to the region year-
round, the other species clearly migrate into the

region for the sole purpose of feeding during austral

summer (most of the whales) or in autumn following
reproduction in the sub-Antarctic (fur and southern

elephant seals; Bonner 1998; Parmelee & Parmelee
1987; W. R. Fraser 1978–2006, unpublished data).

Although fish and squid are fed upon by all these

species to varying degrees, Antarctic krill is by far the
most important single component in the diets of these

marine mammals. Thus, in light of the better
documented population responses of penguins to

changes in factors such as sea ice and krill availability
(see §8), it is not inconceivable that WAP marine

mammal populations that are similarly associated

with these variables through life history have
responded in kind. Early surveys seem to support

the existence of such changes, including dramatic
increases in fur seal populations, an ice-avoiding

species, and possible decreases in the pack ice seals,

especially crabeater (Bonner 1985; Laws 1985;
Erickson & Hanson 1990; Parmelee & Parmelee

1987; W. R. Fraser 1978–2006, unpublished data).
Fur seals at South Georgia (north of the WAP)

responded in a nonlinear fashion to climate-driven
anomalies in sea surface temperature and food

availability (Forcada et al. 2005). Atkinson et al.
(2004), moreover, have shown convincingly that
declining sea ice has resulted in a significant decrease

in krill abundance in the regions where the surveys
were undertaken, the WAP and southwest Atlantic

sector of the Southern Ocean. However, although

climate-related population changes are suspected for
marine mammals in other Antarctic sectors (e.g. fur

and southern elephant seals (Weimerskirch et al.
2003; Hucke-Gaete et al. 2004; McMahon et al.
2005) and minke whales (Branch & Butterworth

2001)), data interpretation is potentially confounded
by the fact that many of these species are recovering

from massive population declines induced by human
harvest. As indicated by Smetacek & Nicol (2005),

disentangling the effects of human exploitation,
climate change and changing modes of top-down
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control exerted by large predators is a major scientific
and societal challenge facing Antarctic science.
10. CONCLUSION
The marine pelagic ecosystem WAP, dominated by
diatom primary producers, krill and a great variety of
upper level vertebrate consumers, is similar in its
structure and dynamics to other Antarctic shelf
regions, with the exception of the Ross Sea system
(Smith et al. 2007). The Ross Sea is dominated by
P. antarctica, and has fewer krill than the WAP (Daniels
et al. 2006). However, the WAP differs from all other
Antarctic systems in one important respect: it is
experiencing the most rapid warming of any marine
ecosystem on the planet. Recently resolved changes in
the regional climate and sea ice are now understood to
affect all levels of the food web, from top predators
whose life histories exhibit different affinities to sea ice
to fish, krill, phytoplankton and bacteria. Changes in
these ecosystem components appear to be modulated
by global teleconnections with ENSO and other modes
of climate variability. Clarke et al. (2007) present a
schematic view of a Southern Ocean food web in which
primary production is channelled through krill, salps
and other zooplankton towards three general fates:
passage to higher predators, sinking to benthic food
webs and transfer into the microbial food web. In the
WAP, most production appears to move up through the
food chain to the higher predators or into bacteria.
Only a few per cent of the primary production sinks
through the deep (300–700 m) water column to the
benthos. Whether these modes of ecosystem function
will change in importance with further warming (or
indeed, if they have already changed) is unknown.

A major challenge for Antarctic scientists involves
not only documenting ecosystem responses at all levels
of biotic organization (genome to planetary), but also
establishing a mechanistic understanding of the
linkages between climate, sea ice, biogeochemical
processes and lower to upper trophic levels. The
WAP is fortuitously characterized by a relatively
simplified marine ecosystem (though one still demon-
strating complex dynamics and feedbacks), rapid
climate warming and a well-populated scientific
contingent. These factors present the international
community of Antarctic scientists and policymakers
with an unparalleled opportunity for observing and
understanding the interactions between climate change
and marine ecosystem response.

Preparation of this article was supported by US NSF grant
0217282 from the Office of Polar Programs Antarctic Biology
and Medicine Program and the US Antarctic Program.
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