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ABSTRACT: The mechanisms by which variability in sea ice cover and its effects on the demography
of the Antarctic krill Euphausia superba cascade to other ecosystem components such as apex preda-
tors remain poorly understood at all spatial and temporal scales, yet these interactions are essential
for understanding causal links between climate change, ecosystem response and resource monitor-
ing and management in the Southern Ocean. To address some of these issues, we examined the long-
term foraging responses of Adélie penguins Pygoscelis adeliae near Palmer Station, western Antarc-
tic Peninsula, in relation to ice-induced changes in krill recruitment and availability. Our results
suggest that (1) there is a direct, causal relationship between variability in ice cover, krill recruitment,
prey availability and predator foraging ecology, (2) regional patterns and trends detected in this
study are consistent with similar observations in areas as far north as South Georgia, and (3) large-
scale forcing associated with the Antarctic Circumpolar Wave may be governing ecological inter-
actions between ice, krill and their predators in the western Antarctic Peninsula and Scotia Sea
regions. Another implication of our analyses is that during the last 2 decades in particular, krill pop-
ulations have been sustained by strong age classes that emerge episodically every 4 to 5 yr. This
raises the possibility that cohort senescence has become an additional ecosystem stressor in an envi-
ronment where ice conditions conducive to good krill recruitment are deteriorating due to climate
warming. In exploring these interactions, our results suggest that at least 1 ‘senescence event' has
already occurred in the western Antarctic Peninsula region, and it accounts for significant coherent
decreases in krill abundance, predator populations and predator foraging and breeding perfor-
mance. We propose that krill longevity should be incorporated into models that seek to identify and
understand causal links between climate change, physical forcing and ecosystem response in the
western Antarctic Peninsula region.
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INTRODUCTION

Since the hypothesis was advanced early in the last
decade that a decrease in winter sea ice in the western
Antarctic Peninsula, WAP (see Fig. 1) due to climate
warming was a major factor driving long-term change
in the relative abundance of some regional, krill-
dependent predator populations (Fraser et al. 1992),
several independent studies have significantly en-
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hanced our understanding of the dynamics addressed
by this hypothesis. These studies converge on at least 3
relevant topics: the nature and magnitude of the
warming trend, its consequences to sea ice develop-
ment, and the effects of interactions between these 2
variables on ecosystem processes.

Recent analyses of long-term surface air-tempera-
ture records, for example, indicate that although the
WAP has been warming since at least the mid-1950s
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(Smith et al. 1996, King & Turner 1997), it is mid-
winter warming in particular that shows the only
statistically significant increase (nearly 6°C over the
last 56 yr; Smith et al. 2003). Trends showing a statis-
tically significant anti-correlation between air tem-
perature and sea ice extent have also been detected
(Smith & Stammerjohn 2001), and at least 2 regional
studies now support the hypothesized decrease in
winter sea ice due to climate warming (cf. Fraser et
al. 1992). Work by Jacobs & Comiso (1997) revealed
that in the 2 decades following 1973, sea ice extent
decreased by 20% as a recession that encompassed
both winter and summer sea ice. Recent analyses by
Smith et al. (2002) show that apart from a decrease in
sea ice extent, sea ice during the last decade in par-
ticular has also been forming later and retreating ear-
lier, resulting in a nearly 2 wk decrease in the total
duration of the sea ice season compared to conditions
50 yr ago.

Understanding how these trends may affect WAP
marine ecosystem processes has focused primarily on
the significance of sea ice to the Antarctic krill and the
significance of krill to the marine food web. Krill are a
dominant food-web component in the WAP marine
system, and play a critical role in the transfer of energy
between primary producers and secondary consumers
(Laws 1985). Changes in krill distribution and abun-
dance are thus 2 of the factors that can profoundly
impact food-web interactions (Priddle et al. 1988,
Fraser & Trivelpiece 1996, Karl et al. 1996, Atkinson et
al. 1999, Murphy & Reid 2001, Reid & Croxall 2001).
The significance of sea ice to krill ensues from evi-
dence that, unlike adults, larval krill cannot endure
long periods without feeding (Quetin & Ross 1991, Ross
& Quetin 1991). Winter survival when primary produc-
tion is low thus depends, at least in part, on the avail-
ability of under-ice algae (Daly 1990), and several
recent WAP studies have not only shown that cohort
strength in krill is tightly coupled to sea ice conditions
during the preceding winter (Kawaguchi & Satake
1994, Fraser & Trivelpiece 1995a,b, Siegel & Loeb
1995, Loeb et al. 1997, Siegel et al. 1997, 1998), but that
an order of magnitude decrease in krill abundance has
occurred in the northern WAP during the last decade
(Siegel & Loeb 1995, Loeb et al. 1997, Siegel et al.
1997, 1998).

The belief that these interactions are essential to
understanding causal links between climate change,
ecosystem response, and resource monitoring and
management in this marine system has now emerged
as a new consensus in Southern Ocean ecological
research (Fraser et al. 1992, Murphy et al. 1995,
Fraser & Trivelpiece 1996, White & Peterson 1996,
Loeb et al. 1997, Smith et al. 1999, Murphy & Reid
2001, Reid & Croxall 2001). However, while consider-

able progress has been made in the area of krill-sea-
ice interactions, the mechanisms by which variability
in sea ice cover and its effects on krill demography
cascade to other ecosystem components such as apex
predators remain poorly understood at all spatial and
temporal scales (Murphy et al. 1988, Murphy 1995,
Reid et al. 1999b). It is this area that we explore in this
paper.

Our analysis is focused on Adélie penguin foraging
ecology. Adélie penguins are a sea-ice-dependent
species throughout their circumpolar range (Ainley et
al. 1983, 1994, Fraser et al. 1992, Fraser & Trivelpiece
1996), but only in the mid- to northern WAP is the
diet of this species dominated by Euphausia superba
(Volkman et al. 1980, Fraser & Trivelpiece 1996). In
continental Antarctica, Adélie penguins rely more on
the Antarctic silverfish Pleuragramma antarcticum
and the krill E. crystallorophias, 2 species with a
more on-shelf distribution than E. superba (Clarke et
al. 1998, Ainley 2002). Compared to continental
Antarctica, the WAP continental shelf is very narrow,
sea ice is less prevalent annually, and important
hydrographic features such as Circumpolar Deep
Water (the most voluminous water mass carried by
the Antarctic Circumpolar Current) occur relatively
close to shore (Hofmann et al. 1996, Stammerjohn &
Smith 1996). The populations of krill that occur in the
WAP are also thought to influence the marine
ecosystem as far north as South Georgia (Hofmann et
al. 1998, Murphy et al. 1998), meaning that the eco-
logical setting for this study potentially encompasses
one of the 'source’ regions of large-scale variability.
The processes and models we discuss, therefore, are
circumscribed by rather unique physical and bio-
logical conditions that are atypical of continental
Antarctica.

In this paper, we analyze concurrent data on WAP
sea ice variability, Adélie penguin diets and foraging
trip durations with the object of relating our findings to
the broader issue of WAP food web dynamics, and
specifically to the question of how Adélie penguin for-
aging ecology responds to ice-induced changes in krill
demography. Our approach is conceptually focused on
the predator’s ‘perspective’ of its prey field, a paradigm
that we suggest provides clues to system dynamics not
immediately obvious within the scope of currently
accepted models of krill life-history and predator—krill
interactions. Our results imply a direct, causal relation-
ship between variability in ice cover, krill recruitment,
krill availability and Adélie penguin foraging ecology.
However, based on patterns evident in the diet, we
argue that understanding how these interactions cas-
cade through the food web may require a reassess-
ment of critical aspects of krill life-history and their sig-
nificance to krill demography.
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MATERIALS AND METHODS

Study site and predator foraging. The data were
obtained near Palmer Station (64°46'S, 64°04'W),
Anvers Island, western Antarctic Peninsula (Fig. 1).
Research on Adélie penguins began in the early 1970s
(Parmelee 1992), and since the late 1980s has contin-
ued in support of 2 long-term research and monitoring
programs. An approach shared by these programs is
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the use of penguin foraging ecology as an indicator of
krill variability (see Fraser et al. 1988, Smith et al.
1995), and indeed many studies show that seabirds are
good proxy indicators of the spatial and temporal vari-
ance associated with the structure of their prey popu-
lations (Sunada et al. 1981, Cairns 1987, 1992, Furness
& Nettleship 1991, Hatch & Sanger 1992, Ainley et al.
1993, Croxall et al. 1999, Reid et al. 1999a,b). The pen-
guin data analyzed include a time series on Adélie
penguin foraging trip durations (8 yr) and another on
diets (13 yr), which we use as proxies to investigate
possible ice-induced changes in krill availability and
population size-class structure, respectively.

Diets and krill population size-class structure. Diet
samples were obtained during January and February
1975 to 1977 and 1988 to 1997 from adult penguins
during the chick-feeding phase of the reproductive
cycle. Except for the 1975 to 1977 series, samples were
obtained by using the water off-loading method
(forced regurgitation through stomach larvage; Wilson
1984). Birds were released unharmed after sampling.
The earlier dietary samples were taken by interrupting
newly arrived parents as they began to feed their
chicks and collecting the regurgitate when it spilled on
the ground. Regardless of methodology, 4 to 5 Adélie
penguins were sampled at weekly intervals (30 to
45 per season). Krill were measured from the base of
the eye to the tip of the telson and assigned to 1 of 8
size-categories (6 mm increments) between 16 and
65 mm. Binning at this resolution was necessary to
allow the pooling of historical and mod-
ern data which, for the 1988 to 1991

period, was available only in 5 mm sum-
mary form. Because krill grow more than
5mm yr ! (Siegel 1987), this binning still
resolves changes in population size-class
structure that occur between years. Only
whole, fresh krill originating from the
upper portion of the stomach were mea-
sured. These typically are the first to be
off-loaded or regurgitated (in the case of
the earlier methodology), and their fresh
state clearly separates them from the
more digested layers that often follow. In
all cases, the krill measured represented
a subsample obtained by sorting through
the entire fresh sample to ensure that
smaller specimens were not overlooked;
50 to 100 krill were typically measured
in each subsample.

Krill size-frequency distributions were
developed from these subsamples and

Fig. 1. Palmer Station and the western Antarctic Peninsula and Scotia Sea regions
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analyzed in a log-linear model frame-
work with residual analysis (adjusted
standardized residuals) using SYSTAT,
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Version 5 (Systat, Evanston, IL, USA) to reveal any pat-
terns (Fienberg 1980). We used these data to test 2
related hypotheses: (1) to examine if the size-
frequency distributions of krill obtained by Adélie pen-
guins changed in response to annual winter variability
in sea ice conditions, we used a chi-squared test to test
the null hypothesis that krill size classes in penguin
diets follow a multinomial distribution regardless of
field season; (2) to examine if the size-frequency distri-
butions of krill obtained by Adélie penguins changed
in response to cyclical variability in winter sea ice con-
ditions, we used a chi-squared test to test the null
hypothesis that krill size classes in penguin diets follow
a multinomial distribution regardless of winter cate-
gory. This last hypothesis was tested by divorcing the
diet data from the temporal constraints imposed by
year-specific classification and reclassifying them to
reflect common environmental elements (i.e. sea ice
conditions; Fienberg 1980). Winters during which
mean September sea ice extent reached at least
60°50'S (see sea ice and prey indices in later sub-
sections), or the northern perimeter of the WAP, were
thus categorized as Class 1 ice years (the beginning of
an ice cycle), and the winters following until the next
ice maximum as Class 2 ... N ice years (Table 1). The
term ‘good recruitment’ is used to infer that krill in the
16 to 25 mm size class were significantly more abun-
dant than predicted by the null hypothesis in the log-
linear model. Krill in this size class represent the 1+
age class (Siegel 1987, Siegel et al. 2002), or the age
class upon which most indices of krill recruitment suc-
cess are based (Siegel & Loeb 1995, Loeb et al. 1997,
Siegel et al. 1997, 1998, 2002). Additionally, the term

Table 1. Field seasons categorized according to winter ice

class at Palmer Station. Class 1 ice winters (bold face) signal

the beginning of an ice cycle for analytical purposes and are

based on the patterns of change in sea ice extent in Fig. 2.

1974/75 field season is categorized as Class 5 based on

surface air temperature—sea-ice-extent relationships repor-
ted by Fraser et al. (1992) and Loeb et al. (1997)

Field season Ice class Field season Ice class
1974/75 5 1986/87 1
1975/76 1 1987/88 2
1976/77 2 1988/89 3
1977/78 3 1989/90 4
1978/79 4 1990/91 1
1979/80 5 1991/92 2
1980/81 1 1992/93 3
1981/82 2 1993/94 4
1982/83 3 1994/95 1
1983/84 4 1995/96 2
1984/85 5 1996/97 3
1985/86 6

‘cohort’ is used to refer to Age 1+ krill, which conven-
tion recognizes may include 1 to 2 yr old individuals
(Siegel 1987).

Duration of foraging trips. Foraging trip durations
were determined annually during January 1990 to
1997 by tagging 30 to 40 adult penguins with 13 g
radio transmitters (Advanced Telemetry Systems,
Isanti, MN, USA). Tagged birds were typically brood-
ing 7 to 10 d old chicks, and were selected for tagging
only if their partners were present at the nest so
their relative size could be compared and a gender
assigned. Only 1 member of each pair was tagged, and
pairs too similar in size to make a gender determina-
tion were omitted. This optimized preservation of an
equal sex ratio among tagged birds, and ensured con-
trol over this factor in subsequent analyses (cf. Clarke
et al. 1998, Ballard et al. 2001). Trip durations were
calculated from data obtained using automatic data
loggers set to record (date, h, min) the presence of
tagged birds near their breeding colonies every
20 min; foraging time at sea is thus inferred based on
periods of absence from the colonies.

The foraging trip duration analyses observe several
conditions. (1) To minimize the possibility that chick
development stage between seasons would confound
results (cf. Clarke et al. 1998), the data selected for
analyses were standardized on the date when approx-
imately 70% of the chicks were in créche; this date
varied between 10 and 26 January during the 8 yr
time series. (2) Data included in the analyses was
restricted to two 5 d periods that centered on the
créche date, 1 period before and 1 period after this
date. This ensured adequate sampling of the peak
chick-growth phase, or the period when adults are
likely to be under the greatest constraints to effec-
tively provision their young (Fraser & Ainley 1989,
Salihoglu et al. 2001). The only exception in this pro-
cedure was the 1992 to 1993 field season, where a
receiver malfunction limited the analysis to the last
5 d of this 10 d period. (3) To avoid bias in the analy-
ses due to foraging trip frequency, the mean foraging
trip duration for each 10 d period was developed from
the means of individual trip durations for the period
without weighting by number of trips (CCAMLR
1992). (4) Periods of absence of less than 3 h from the
colonies by adult penguins were not considered in the
analyses, as direct observations suggested that most
birds are not likely to complete a foraging trip in less
than 3 h (Fraser & Trivelpiece 1996).

Sea ice indices. Sea ice trends were extended through
1996 by updating the index reported in Fraser et al.
(1992) with weekly ice charts distributed through the
US Navy-NOAA Joint Ice Center (now called the
National Ice Center [NIC]; see www.natice.noaa.gov).
These charts are compiled every 7 d and represent
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summaries of sea ice conditions derived by integrat-
ing the results of several remote-sensing technologies.
Because of differences in the number of sensors used
aboard the satellites that provided the data used to
generate the older (pre-1978) and more recent (post-
1978) charts, researchers often only consider the more
recent information when developing ice indices (e.g.
Smith et al. 1998). However, Wilson et al. (2001) have
shown that integrating older and newer remote-
sensing data did not skew the ice relationships being
investigated (sea ice extent in the Ross Sea); we thus
similarly assume that in updating our index, the
results were compatible over the time series.

Our ice index is based on the northward position of
the ice edge in September; this was calculated as the
mean of the ice edge latitudes shown in the NIC 7 d ice
charts along a line extending from the tip of South
America to a point centered on 61°S. The southern
end-point of this line is just outside the northern
boundary of the WAP (see Hofmann et al. 1996, p. 62),
and the precedence for reporting sea ice variability in
this manner is based on the study of Fraser et al. (1992,
p. 526). In the latter study, regression analysis showed
a highly significant relationship between surface air
temperature and the mean northward position of the
ice edge, such that winters with extensive ice are char-
acterized by temperatures <-4.3°C and an ice edge
that reaches or exceeds 60° 50’ S. September marks the
end of sea ice advance in this region (Stammerjohn &
Smith 1996); hence, we used the mean northward posi-
tion of the ice edge during September both as an index
of annual change and as the basis for reclassifying the
year-specific penguin-diet data to reflect common win-
ter sea ice conditions (see diets and krill population
size structure in earlier subsections).

Prey indices and simulations. We used models
described by Priddle et al. (1988) and Murphy & Reid
(2001) in combination with a krill abundance index

based on stratified mean densities from the Elephant
Island (61°10'S, 55°14'W) region just north of the
WAP (e.g. Siegel & Loeb 1995, Loeb et al. 1997, Siegel
et al. 1997, 1998, 2002) to test hypotheses about
changes in krill availability suggested by our analyses.
The Elephant Island data were used in lieu of Palmer
Station data because the time series on krill abundance
for the latter does not include the first 2 yr of our 8 yr
foraging trip duration time series (see Smith et al.
1995). Piece-wise linear regression models were used
to investigate relationships between the Elephant Is-
land krill-abundance trends and the foraging responses
of Adélie penguins at Palmer Station.

RESULTS
Sea ice extent

Winter sea ice extent in the WAP exhibits high inter-
annual variability but, as shown in Fig. 2, ice maxima
are episodic and high-ice years are invariably followed
by several low-ice years that together form a distinct
series or cycle. We identified 5 such cycles between the
1973/74 and 1996/97 field seasons. These cycles began
with the winters of 1975, 1980, 1986, 1990 and 1994,
respectively, and each was characterized by an ice
field that advanced to or beyond the northern bound-
ary of the WAP (Fig. 1). The longest interval between
high-ice years (6 yr) occurred during the 1980 to 1986
cycle, the 2 shortest intervals (4 yr) during 1986 to 1990
and 1990 to 1994, and an intermediate interval (5 yr)
during 1975 to 1980. Together, these cycles occurred
with an average frequency of 4.75 yr, with no indica-
tion of an ice maximum during the 1977 and 1978 gaps
in the data based on air temperature—sea-ice relation-
ships (Fraser et al. 1992, Loeb et al. 1997, Smith et
al. 2003).
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Table 2. Euphausia superba. Pattern of standardized residuals for the
1974/75 to 1996/97 field seasons at Palmer Station. Large positive residuals
indicate that cells had more krill than predicted by the null hypothesis. Size
classes 16—-20 mm/21-25 mm and 56-60 mm/61-65 mm combined because
of low frequencies. For residuals >2.0, o. = 0.05; for residuals 23.0, oo = 0.01

Field Krill size class (mm)

season  16-25 26-30 31-35 36-40 41-45 46-50 51-55 56-65
1974/75 555 11.97

1975/76 18.64 9.22
1976/77  5.59 15.25
1987/88  7.50 3.40 21.64
1988/89 4.93 7.15 13.69 10.57
1989/90 13.09 14.93 9.99

1990/91 2.49 4.00 3.67

1991/92  2.50 2.05 3.15 8.39 22.23
1992/93 17.58 15.53

1993/94 8.16  20.05

1994/95 10.66 16.24

1995/96  6.17 7.88  13.88

1996/97 849 1643 37.63 10.24

Table 3. Euphausia superba. Pattern of standardized residuals for each ice
class category at Palmer Station. Large positive residuals indicate that cells
had more krill than predicted by the null hypothesis. Size classes
16-20 mm/21-25 mm and 56-60 mm/61-65 mm combined because of low
frequencies. For residuals 22.0, oo = 0.05; for residuals 23.0, oo = 0.01

Ice Krill size class (mm)
class 16-25 26-30 31-35 36-40 41-45 46-50 51-55 56-65

1 775  20.73

2 8.03 526 2636 12.15
3 11.54 27.83 8.83

4 12.63  12.00

5 5.55 11.97

Trends in krill size class

exception being 1994, when 2 of these
events are recorded during sequential
field seasons. (2) The second pattern
issues from the first. Between ice max-
ima, the pattern of standardized residu-
als associated with the frequency of
occurrence of the various size classes
changes, with the larger (>25 mm) as
opposed to the smaller (i.e. the 16 to
25 mm) size classes becoming the statis-
tically significant components of the diet
(Table 2). Fig. 3 shows these trends for
the continuous data that began with the
1987/88 field season. This time series
began with predominately large Kkrill
(mode = 51 to 55 mm) in 1987/88 and
ended with predominantly small krill
(mode = 31 to 35 mm) in 1996/97. Dur-
ing the intervening decade, however, 2
quasi-independent patterns were evi-
dent in which predominantly smaller
krill that emerged in the population fol-
lowing years of heavy ice were replaced
by larger krill over a 3 to 4 yr period.

Comparisons between ice cycles

The null hypothesis that krill size
classes follow a multinomial distribution
regardless of winter category (Table 1)
was rejected (x2 = 4767, G-test = 4437,
df = 28, p < 0.001) and the standardized
residuals were examined for patterns
(Table 3). The trends apparent in Table 2
and Fig. 3 are confirmed in Table 3, with

Comparisons between field seasons

The null hypothesis that krill size classes in pen-
guin diets follow a multinomial distribution regard-
less of field season was rejected (32 = 10 146, G-test =
10283, df = 72, p < 0.001), and the standardized
residuals were examined for patterns (Table 2).
There were 2 trends associated with year-specific
changes in sea ice extent: (1) The frequency of
occurrence of the 16 to 25 mm size class (the 1+ age
class), suggesting good recruitment, was statistically
significant in the penguin diets only during 1976/77,
1987/88, 1991/92, 1995/96 and 1996/97, or the field
seasons following sea ice extent maxima associated
with the ice cycles that began with the winters of
1975, 1986, 1990 and 1994 (Fig. 2). Each ice cycle
was associated with at least 1 recruitment event, the

the relevant correlations more clearly expressed. Thus,
the occurrence of the 16 to 25 mm size class (1+ age
class), indicating good recruitment, became statisti-
cally significant only during Class 2 ice years, or fol-
lowing the second winter of an ice cycle. Beyond the
second winter, the frequency of occurrence of specific
size classes varied in accordance with the progression
of the ice cycle, gradually shifting from smaller to
larger krill through a 4 to 5 yr period.

Adélie penguin foraging performance
Models and predictions

Priddle et al. (1988) and Murphy & Reid (2001)
simulated the effects of failed recruitment years on
krill population size-class structure (see also Reid et
al. 1999a). In these simulations, 1 or more years of
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Fig. 3. Pygoscelis adeliae. Surface contour plot showing
relative presence of krill Euphausia superba size classes
between 1987/88 and 1996/97 field seasons in Adélie penguin
diet samples near Palmer Station. Years in bold face mark
beginning of ice cycles (based on data in Table 1)

recruitment failure tends to skew distributions
towards the larger size classes, while years of good
recruitment have the opposite effect. Also, because
entire age groups may be absent from the population
due to 1 or more recruitment failures,
the simulations indicate that krill abun-
dance tends to decrease following years
of poor recruitment, and to increase fol-
lowing years of good recruitment. The
relevance of these simulations is that
they predict the direction of change (but
not the magnitude) in krill size-class
structure and abundance that should fol-

Krill size-class structure, and variability in Adélie
penguin foraging trip duration

Differences in mean FTDs (Table 4) were highly sig-
nificant (F=46.80, df =7, 238; p < 0.001), but variability
agreed only in part with the changes in krill size-class
structure suggested by Table 3. As predicted, the
longest mean FTDs (1990/91, 1994/95) were associated
with the presence of predominantly large krill in
Class 1 ice years, or the years that marked the begin-
ning of the ice cycles that started with the 1990 and
1994 winters (Fig. 2). Class 5 ice year results are not
available, as this category did not occur during the
FTD time series. Mean FTDs also decreased signifi-
cantly during Class 2 ice years (1991/92, 1995/96), the
change predicted based on the presence of smaller (16
to 25 mm) krill in the population due to good recruit-
ment (Table 3). Although FTDs were expected to
increase during Class 3 and 4 ice years, the observed
changes generally did not agree with expectations,
and only the 1989/90 season (Class 4 ice year of the
1986 ice cycle) exhibited a longer FTD.

Krill abundance proxies, and variability in
Adélie penguin foraging trip durations

Of the 5 ice cycles covered in whole or in part by the
Elephant Island krill abundance time series (Table 5),
those beginning in 1980, 1990 and 1994 support the
prediction that, within an ice cycle, Class 1 ice years
should be associated with lower krill abundances and
Class 2 ice years with higher abundances due to the
influx of recruits. The 1980 and 1986 ice cycles support
the additional prediction that krill abundances within

Table 4. Pygoscelis adeliae. Adélie penguin foraging trip durations near
Palmer Station during January chick-feeding period. The 8 field seasons
shown encompass all or part of the ice cycles that began with winters of
1986, 1990 and 1994. Ice classes as in Table 1 and Fig. 2; bold face marks
beginning of an ice cycle. Significance values are based on post-hoc tests
using Bonferroni adjustment, and represent comparisons of each season
with that preceding. N: number of penguins foraging during the period;
n: number of foraging trips completed; —: no comparison made

low good and bad recruitment events.

Therefore, if changes in krill abundance Field Ice Mean SD  Significance N n
track the effects of krill size-class struc- season class (h)
ture as suggested by these models, the

. . 1989/90 4 14.33 5.44 - 23 207
patterns evident in Table 3 would pre- 1990/91 1 25.82 1211 0.000 2 141
dict that the duration of Adélie penguin 1991/92 2 9:22 1:95 0:000 34 459
foraging trips (FTDs) should be rela- 1992/93 3 8.19 2.17 1.000 31 220
tively long during Class 1 and 5 ice 1993/94 4 8.99 3.01 1.000 31 429

: : 1994/95 1 25.02 8.41 0.000 38 293
, shortest d Cl 2 . ‘ '

years, SHOTiest curing °-ass < 1ce years 1995/96 2 12.39 550 0.000 32 201
and increase thereafter through Class 3 1996/97 3 0.34 279 0.976 34 361
and 4 ice years.
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Table 5. Euphausia superba. Trends in estimated krill stock density (mean
no./1000 m~®) in the Elephant Island region. Data are matched sequentially
by rows and columns to illustrate changes within and between ice cycles. Ice
classes (as in Table 1) reflect ice cycles beginning in 1975, 1980, 1986, 1990
and 1994. Values in bold face: density of krill stocks at the beginning of
each ice cycle; nd: no data. (Table adapted from Loeb et al. [1997] and

Siegel et al. [2002])

which show krill abundances in post-
Class 2 ice years as stable and increasing,
respectively (Table 5).

Adélie penguin FTDs near Palmer
Station varied in close agreement with
changes in krill abundance near Elephant

Island (Fig. 4a). As predicted based on

Ice class Field season Krill stock density the patterns in Table 3, Class 1 ice years
1990/91 and 1994/95 were associated with
1 75 80 86 90 94 nd 495 nd 14.8 the longest FTDs and the 2 lowest mea-
2 76 81 87 9195 nd 5109 66.6 253 79.1 sures of krill abundance, while the reverse
3 77 82 88 92 96 1329 90.6 417 26.6 270.8 X ! .
4 78 83 89 93 nd 674 154 289 was observed during Class 2 ice years
5 79 84 nd 123 1991/92 and 1995/96, which showed large
6 85 nd  nd increases in krill abundance and signifi-

ice cycles should decrease during Class 3 and 4 ice
years in the absence of new recruitment as the domi-
nant cohort produced during the Class 2 ice year
moves through the population. These trends, however,
are not consistent with the 1990 and 1994 ice cycles,
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Fig. 4. Pygoscelis adeliae. (a) Variability in Adélie penguin
foraging trip duration (line) near Palmer Station in relation to
krill stock density (bars) near Elephant Island. Numbers
below the field season designator are ice year classes. Data
are adapted from Tables 4 & 5. (b) Piece-wise linear regres-
sion model showing relationships between foraging trip
duration near Palmer Station and krill Euphausia superba
abundance near Elephant Island

cantly shorter FTDs. Although the FTDs
associated with Class 3 and 4 ice years
again showed the least agreement with expectations,
they varied in accordance with the apparent changes in
krill abundance (Fig. 4a). The relative magnitudes of
the changes, however, were very different, suggesting
an intrinsically non-linear relationship between krill
abundance and FTD. This was confirmed with a piece-
wise linear regression model (Fig. 4b), which explained
81.76% of the variance (p < 0.01) and identified a
breakpoint or threshold in krill abundance at 25.94
(1000 m~3). The negative slope of the line before this
breakpoint (-0.8238) suggests that at krill abundances
below 25.94 (1000 m™3), FTDs will increase as krill
abundance decreases. The slope of the line after the
breakpoint (0.0001) is in effect a plateau, indicating
that FTDs will not continue to decrease with higher krill
abundances; indeed, the analysis suggests that a mean
FTD of 9.71 h was still required by penguins to forage
when krill abundance was above 25.94 (1000 m™3).

DISCUSSION
Sea ice extent

Maxima in sea ice extent propagate eastwards
around Antarctica in the form of 2 wavelengths that
encircle the continent end-to-end, but that as individ-
ual phases take 8 to 10 yr to return to their starting
point (Murphy et al. 1995, White & Peterson 1996).
Variability in maximum sea ice extent at any particular
location around the continent thus occurs on time-
scales of 4 to 5 yr. This is the periodicity of the ACW
(Antarctic Circumpolar Wave) (White & Peterson
1996). The patterns of sea ice variability observed in
this study are consistent with this periodicity, taking
the form of ice cycles that manifest regionally every
4 to 6 yr (Fig. 2, Table 1).

Adélie penguin foraging responses to this forcing
reflect at least 3 related processes: the effects of sea ice
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on krill recruitment, the effects of krill recruitment on
krill population size-class structure, and the effects of
this structure on foraging performance. Although
these processes in some cases appear as direct, causal
interactions, this conclusion overlooks the full implica-
tions of the ACW on regional processes. Apart from sea
ice extent, the ACW exhibits coherent anomalies in
sea-surface temperature, meridional wind stress and
atmospheric sea-level pressure (White & Peterson
1996), suggesting that water column and other effects
may play an additional causal role in the biology of the
oceans influenced by the ACW (Peterson & White
1998, Gloersen & White 2001). In the WAP, episodic,
across-shelf exchanges due to meanders of the Antarc-
tic Circumpolar Current can influence sea ice forma-
tion through water temperature and salinity changes,
and these, in turn, may have important (but lagged)
effects on primary production and krill reproduction
(Hofmann & Klinck 1998, Klinck 1998, Prézelin et al.
2000). Thus, although sea ice extent is a reasonable
proxy for investigating krill-predator interactions, it is
only one manifestation of a host of associated pro-
cesses that might explain variability in marine popula-
tions (e.g. Nicol et al. 2000). Some of these, especially
as they relate to hydrography and other possible water
column effects on krill, are discussed in Hofmann
& Fraser (2003). Below we focus the discussion on
ice—krill-predator interactions.

Krill population size-age structure

The patterns evident in Table 3 suggest that the krill
population encountered by Adélie penguins in the
Palmer Station region was influenced by processes
that produced a non-random size and age structure.
This is implicit in the systematic increase in krill size
classes as ice cycles progressed annually through an
approximately 4 to 5 yr period. Because multiple age
classes would buffer the population from exhibiting
these systematic changes (Priddle et al. 1988, Siegel et
al. 1998, Reid et al. 1999a, Murphy & Reid 2001), how-
ever, a key implication is that strong age classes exhib-
ited a common pattern of rare occurrence during the
time series integrated by the analyses. The concor-
dance in periodicities between years of extensive win-
ter sea ice in the WAP (Fig. 2), good krill recruitment
(Table 2) and the progression of strong year classes
through the population within ice cycles (Table 3) thus
suggests that forcing by the ACW or ACW-like pro-
cesses underlines the non-random structure of the krill
population.

Although active selection by the predator could be
another possible explanation for the apparent gaps in
age classes observed in the data (Tables 2 & 3), much

of the available evidence points to passive (i.e. lack of
availability in the foraging environment) selection as
playing the dominant role. This conclusion is unam-
biguous in this study based strictly on the very large
values and statistical significance of the residual pat-
terns evident in Table 3. The best example is Class 2
ice years, in which the occurrence of the smallest krill
size class (16 to 25 mm) and its associated residual
(8.03) was coherent with the largest krill (56 to 65 mm)
and some of the largest residual values recorded in the
time series (26.36). Other studies support this conclu-
sion. Systematic gaps due to missing age classes in krill
population structure have been reported for the King
George Island (Fraser & Trivelpiece 1995a,b) and Ele-
phant Island (Fig. 1; and Siegel et al. 1998, 2002)
regions. These gaps also show a pattern of episodic
recruitment every 4 to 5 yr, including intervening years
in which age 1+ krill are rare or completely absent. A
third area in which similar processes have been ob-
served is South Georgia (Fig. 1). Here, Reid et al.
(2002) showed that, after adjusting for regional differ-
ences in growth and mortality, the size structure of the
local krill population exhibited strong spatial and tem-
poral coherence with recruitment events in the Ele-
phant Island region. Especially relevant insofar as our
own findings are concerned, however, is that during
the decade (1991 to 2000) considered in their analyses,
the Elephant Island area generated only 2 strong year
classes (1990/91, 1994/95, see also Table 5), which
Reid et al. (2002) noted were expressed simultaneously
in the 2 regions in 1991/92 and 1995/96. If we add our
results to these observations (Table 2), it appears that
the strong krill year classes produced in response to
the 1990 and 1994 ice cycles were expressed concur-
rently in at least 3 regions. This not only supports the
idea that the gaps in krill age classes observed in our
data were unrelated to active selection by Adélie
penguins, it also suggests that the 4 to 5 yr pattern of
episodic, sea-ice-induced forcing of krill demography
indicated by our analyses (Tables 2 & 3) may have
involved processes operating over scales that encom-
passed much of the Scotia Sea and WAP, at least as far
south as Anvers Island.

A non-random size structure implies an analogous
age structure, and because aspects of krill life-history
with implications for distribution and abundance can
be age-related (see following paragraphs), population
age structure can offer important insights into factors
that may affect predator foraging performance (Mur-
phy et al. 1998, Murphy & Reid 2001). A hypothetical
age structure for a dominant krill cohort as it moves
through the population within an ice cycle is shown in
Table 6. Recognizing that difficulties exist in attribut-
ing size to age in krill, we have assumed that the
size—age relationship of 16 to 25 mm krill (Age 1+) in
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Table 6. Euphausia superba. Hypothesized age of dominant krill cohort near
Palmer Station during each year of an ice cycle. Rationale for these age

senescence ultimately becomes a key fac-
tor affecting krill availability. Indeed, by
the time krill reach Age 5+, they are not

only approaching the limits of their life
span (now widely accepted as 5 to 6 yr;
Knox 1994, Siegel & Kalinowski 1994), but

classes is based on pattern of residuals in Table 3
Ice Krill size class (mm)
class 16-25 26-30 31-35 36-40 41-45 46-50 51-55 56-65
1 5+
2 1+ 6+
3 2+
4 3+
5 4+

the cohort in general has been subjected
to several years of predation and other
forms of mortality. The possible effects
of senescence are not intuitively obvious
by inspection of size-class distributions

Class 2 ice years is known with more certainty than it
is for the larger size classes (Siegel 1987, Siegel & Kali-
nowski 1994, Siegel et al. 2002); hence, it is the domi-
nance of this cohort that is expressed through the krill
population in subsequent years. This assumption is
not unreasonable (see models in Reid et al. 1999a
and Murphy & Reid 2001), and indeed has been empir-
ically documented in many fishes for which stock-
size—age relationships are better known (Cushing 1995).

Table 6 suggests at least 2 processes by which the
spatial and temporal availability of krill to Adélie pen-
guins may be affected within and between ice cycles.
The first concerns age-specific habitat preferences that
attend summer reproductive behavior. Smaller, non-
reproductive krill occur mostly over the inner shelf,
while the larger, sexually mature forms congregate
over the outer shelf and shelf break to spawn (Siegel
1988, Ross et al. 1996, Lascara et al. 1999). One impli-
cation of Table 6, therefore, is that in the absence of
additional recruitment, the prey field will be systemat-
ically positioned at greater distances from the penguin
colonies within an ice cycle as the strong age class
generated during the Class 2 ice year ages and
matures. The second process concerns the relative
annual contribution of these strong age classes to krill
abundance within and between ice cycles. The focal
point of these interactions appear to be Age 5+ krill (or
Age 4+ in cases where the ice cycle periodicity is 4 yr),
which Table 6 indicates is the age class that bridges
the population dynamics of one ice cycle with that of
the next. This is implied by the predominance of this
age class during Class 1 ice years, which suggests that
Age 5+ krill are not only the remaining members of the
strong age class generated during the Class 2 ice year
of the previous ice cycle, but also represent the core
spawning stock for the next ice cycle, as it is from this
population that the smaller Age 1+ recruits originate.
Thus, another implication of Table 6 is that even
though krill abundance within ice cycles may vary
considerably as these strong age classes pass through
the population (e.g. Table 5; see also Loeb et al. 1997,
Hewitt & Linen Low 2000, Siegel et al. 2002), cohort

alone (e.g. Table 3), but may explain why

Class 1 ice years are invariably associated
with the lowest measures of krill abundance within ice
cycles (Table 5).

Although any model of krill age structure will be
equivocal by default until better size—age relationships
are established, the dynamics implied by Tables 3, 5 &
6 (i.e. a population structure of larger, older krill being
associated with low abundance) do not seem to be
unique to the Palmer Station region. Low krill biomass
and a population structure composed of predominantly
larger, older individuals and, conversely, high krill
biomass and smaller, younger individuals, have (not
surprisingly) also been documented at South Georgia
(Murphy et al. 1998, Reid et al. 1999a,b, Murphy &
Reid 2001, Reid et al. 2002), and indeed appears to
be part of a coherent, large-scale pattern linking
this region to similar dynamics near Elephant Island
(Kawaguchi et al. 1997, Brierley et al. 1999, Watkins
1999, Hewitt & Linen Low 2000, Reid et al. 2002).
Given the previously discussed concurrence in the
temporal emergence and spatial expression of strong
krill age classes between the 3 regions, a key conclu-
sion suggested by our analyses is that the krill popula-
tion structure may have similar implications to the
spatial and temporal distribution of krill biomass over
the entire range of krill in these 3 regions, not just
in the sectors of sea ice influenced by the ACW.

Predator foraging performance

The factors that can influence Adélie penguin FTDs
are complex (e.g. Ballard et al. 2001), and some can
operate independently of changes in prey availability.
These may include residual summer sea ice or distance
to the ice edge (Ainley & LeResche 1973, Ainley et al.
1998), for example, or effects induced by gender-
specific behaviors or chick development phase (Clarke
et al. 1998, Clarke 2001). It is highly unlikely, however,
that these were confounding elements in this study. Ice
in the Palmer Station area during January and Febru-
ary when the FTD data were obtained was negligible
even during the coldest seasons, and permanent sum-
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mer ice is typically only found in the Marguerite Bay
region 300 to 500 km to the south (cf. Stammerjohn &
Smith 1996). We also controlled for possible effects due
to interannual variability in chick development and
biases that might have arisen through over-represen-
tation of one gender over the other (see ‘Materials and
methods").

On the other hand, our findings concur with those of
Chappell et al. (1993), who suggested, based on the
only other major study of Adélie penguin foraging
ecology near Palmer Station, that prey capture by this
species may be limited by its ability to find krill, as
opposed to its ability to efficiently exploit krill once
located. Indeed, this seems implicit in Fig. 4b, which
indicates that FTDs do not change in direct proportion
to changes in krill abundance, but rather exhibit a
pattern of variability that is dependent on whether
abundances fall above or below a threshold krill
density. Above this threshold density, FTDs eventually
plateau, while below it they continue to increase with
decreasing krill abundance, implying a dispropor-
tional sensitivity to periods of reduced krill availability.
Consistent with this observation, we suggest that these
dynamics can be attributed directly to the effects that a
non-random krill population structure imposes on krill
availability, but add that changes in krill abundance
alone are probably not the only factors affecting these
interactions. More specifically, we propose that follow-
ing the recruitment events that attend Class 2 ice years
within ice cycles, the effects of cohort senescence on
abundance and of krill reproductive behavior on
spatial distribution become interactive, leading ulti-
mately to episodic ‘environmental crunches’ (Wiens
1989) manifested as particularly long FTDs during the
Class 1 ice years of the succeeding ice cycles (e.g.
Table 4, Fig. 4a).

What leads us to this conclusion is that krill spatial
distribution (inferred from changes in annual popula-
tion size structures and age during the summer spawn-
ing season), also seems to influence FTDs, especially
during periods of low krill abundance. This is evident
when comparing FTDs and the respective krill popula-
tion size structures during years of similarly high or
similarly low krill abundances. For example, during
1991/92, 1992/93 and 1993/94, years of similar, high
krill abundances (Table 5, Fig, 4a) the mean FTDs
exhibited little variability (Table 4) despite significant
annual differences in the prevailing population size
structures (Table 2). In contrast, during 1989/90 and
1994/95, vyears of similar, low krill abundances
(Table 5, Fig. 4a), the mean FTDs were both signifi-
cantly different (Table 4: 14.33 + 5.44 vs 25.02 £ 8.41 h),
and clearly associated with different krill population
size structures. Thus, although both these vyears
included 36 to 40 mm krill as one of the significant size

modes in the diet (Table 2), 2 additional smaller modes
(26 to 30, 31 to 35 mm) prevailed in 1989/90, but only a
larger mode (41 to 45 mm) in 1994/95.

If one considers that 90 % of all female krill become
fully mature and spawn for the first time at 36 to 39 mm
total length (Siegel & Loeb 1994, ca. 34 to 37 mm based
on our measurement techniques), the most obvious
explanation for the shorter FTDs during 1989/90 ver-
sus the longer FTDs during 1994/95 is that penguins
were feeding on smaller, sexually immature krill dis-
tributed over the inner shelf during 1989/90 as
opposed to larger, sexually mature forms distributed
over the outer shelf during 1994/95 (Table 2). How-
ever, as a general causal explanation, these dynamics
are only in part supported by the FTD data. Based on
average Adélie penguin swimming speeds (2 m s}
Culik & Wilson 1991), birds in 1994/95 could not have
reached, foraged and returned from the outer shelf (ca.
160 km from Palmer Station) in the time suggested by
the mean FTDs (25.02 + 8.41 h, Table 4). Indeed, con-
sidering the overall mean FTDs (Table 4), a liberal
interpretation of foraging range based on swimming
speeds could place birds within 90 km of Palmer
Station in some years, but within a more realistic 10 to
15 km in most years if prey capture times are consid-
ered (see Chappell et al. 1993). This concurs with other
local observations, including at-sea surveys (Fraser &
Trivelpiece 1996) and, importantly, implies a predator-
prey system that actually appears to be very closely
coupled in summer with inner shelf rather than outer
shelf processes.

Following Chappell et al.'s (1993) conclusions, there-
fore, the factor most likely to change as krill abun-
dances decrease is search time, which suggests a mod-
ified explanation of how krill spatial distribution may
interact with abundance to affect FTDs. As implied by
Fig. 4b, Adélie penguins still require a minimum FTD
as krill abundances increase above a threshold level,
suggesting that abundance may mask any effects on
search time due to krill spatial distribution. However,
given the apparent sensitivity of FTDs to a decrease in
krill abundance below the threshold level, any factor
that reduces search time would probably be reflected
as shorter FTDs. Young, non-reproducing krill could
constitute such a factor during years of low krill abun-
dance because, unlike adults, they are both non-
migratory within seasons and, from a spatial perspec-
tive, tend to remain over the inner shelf (Siegel 1988,
Ross et al. 1996, Lascara et al. 1999). Around Palmer
Station, moreover, the presence of these krill leads to
considerable foraging by penguins within 1 km of the
colonies (Chappell et al. 1993, W. Fraser unpubl. data),
suggesting that these forms also occur over shallower
waters close to the land margins. Although more work
is needed to understand why large, reproducing krill
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are so consistently present over the inner shelf rela-
tively close to the penguin colonies (but see Fraser &
Trivelpiece 1996, Prézelin et al. 2000), the conse-
quences of episodic recruitment (i.e. Table 3) to FTDs
are clear: the decreases in abundance and changes in
distribution that occur as the krill cohort ages over the
course of 4 to 5 yr inevitably converge, ultimately
producing the environmental crunches during Class 1
ice years previously suggested.

On a larger scale, it would appear that these environ-
mental crunches may represent an important juncture
in this marine ecosystem insofar as krill availability to
predators is concerned. In the Palmer Station FTD time
series, 2 such crunches are evident (1990/91 and
1994/95; Table 4, Fig. 4a), and both closely agree
(1 yr) with similar years of increasing foraging trip
durations and negative changes in the reproductive
output indices of 4 major krill consumers in South Geor-
gia, including the Antarctic fur seal Arctocephalus
gazella, the macaroni and gentoo penguins Eudyptes
chrysolophus and Pygoscelis papua, and the black-
browed albatross Thalassarche melanophrys (Boyd et
al. 1994, Croxall et al. 1999, Reid & Croxall 2001). We
noted earlier in the text, based on coherent patterns in
the temporal emergence and spatial expression of
strong krill age classes between these regions, that
changes in the krill population size-class structure sug-
gested by Table 3 may have similar consequences for
the distribution of krill biomass between Anvers Island
and South Georgia. This was confirmed by our analy-
ses. Indeed, the implication is that forcing by these pro-
cesses is coherent over such large scales that all krill-
dependent top predators are affected, even those with
very different life-histories and ranges of operation.

Implications: krill longevity, climate warming and
ecosystem response

One of the mechanisms by which climate warming
may induce changes in ecosystem structure and function
is by disrupting the evolved life-history strategies of key
component species (Rhodes & Odum 1996), and certainly
one of the most extraordinary features of krill life-history
is its remarkable 5 to 6 yr life-span (Nicol 1990, Knox
1994, Siegel & Kalinowski 1994, Verity & Smetacek
1996). However, despite broad agreement that this
feature is indeed unique among euphausiids, the
longevity of Euphausia superba has not been evaluated
as a possible causal link between WAP climate warming
and ecosystem response. A key implication of our analy-
ses is that krill longevity may be playing a pivotal role
in contemporary match-mismatch dynamics, an idea
drawn from Cushing's match-mismatch hypothesis and
its relationship to understanding recruitment variability

in fish (review by Cushing 1995). Here we look at recent,
significant ecological changes in the WAP and Scotia Sea
regions, and suggest that a mismatch between krill life
span and the timing of winter sea ice development may
account for many of the observed trends.

Our thesis is based on 2 observations. The first is that
sea ice maxima in the WAP region, which provide the
conditions favorable to the generation of strong krill year
classes, have been rare, occurring on average only once
every 4 to 5 yr for most of the last 3 decades (Fig. 2). Krill
life span is clearly the essential feature bridging this gap,
with the result that at least 1 strong year class has been
generated per ice cycle over the same time period. This, in
our view, is one of the most significant implications of the
patterns evident in Table 3, although Table 6 provides a
better perspective of the implied age-specific dynamics.
These strong age classes apparently persist in the envi-
ronment only through Age 6+, which not only agrees with
most contemporary estimates of krill longevity (see cita-
tions in foregoing paragraphs), but also suggests that the
critical maximum age by which reproduction has to occur
is approximately Age 5+, or during Class 1 ice years.
Another important implication, however, is that if krill life-
span fails to bridge the number of years that elapse
between winters of ice maxima, cohort senescence
overtakes the population (i.e. based on Table 6, there is no
evidence that statistically significant numbers of krill
survive beyond Age 6+), with the obvious consequence
that most members of the dominant age class die before
they can reproduce and contribute to the next generation
of recruits (cf. Finch 1990). The second observation is that
although sea ice maxima occur on average every 4 to 5 yr,
6 yr elapsed between the ice cycles that began with the
winters of 1980 and 1986 (Fig. 2), a gap that is unique in
the contemporary WAP sea ice record (Stammerjohn &
Smith 1996, Hewitt 1997, Jacobs & Comiso 1997, Smith et
al. 2003), and which we suggest had a major impact on
regional ecological processes. The reason is that while
the decade apparently began with 2 strong (1979/80,
1980/81) and 1 moderately strong (1981/82) krill age
classes (Loeb et al. 1997, Siegel et al. 2002), their hypo-
thetical ages by the 1986/87 spawning season (7+, 6+ and
5+, respectively) would imply that only the 1981/82 year
class remained sufficiently abundant to contribute sig-
nificantly to reproduction and recruitment. Indeed, the
notable factor here is that the 1980/81 year class resulted
in the highest krill densities recorded to date in the
Elephant Island region (Table 5). We thus postulate that
the loss of most of this cohort and its reproductive poten-
tial to senescence must have had major ecological con-
sequences, and this agrees with major regional-scale
changes in krill and their predators.

For example, the lowest krill abundances in the
Elephant Island time series were recorded in 1990
(Table 5); biomass and density anomalies also changed
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from predominantly positive before 1985 to negative
after 1987 through 1995 (Siegel et al. 1998). Based on
data of Woehler et al. (2001), Adélie penguin popula-
tions at 2 WAP localities (Palmer Station and King
George Island) and in the South Orkney Islands (Signy
Island) to the east were stable or increasing through
the late 1980s and have decreased significantly post-
1990. Trends in chinstrap (Pygoscelis antarctica) and
gentoo (P. papua) penguin populations, however, were
less consistent between these regions, with founder
colonies increasing at Palmer Station, but larger popu-
lations decreasing elsewhere. In contrast, in South
Georgia, all populations of the island’'s 4 major krill-
eating predators showed post-1990 declines versus
stable or increasing pre-1990 trends (Reid & Croxall
2001). Some related trends are also interesting. For
example, the birth weight of male and female Ant-
arctic fur seals showed a positive trend though 1990
and a negative trend thereafter, which was also true
for trends in the arrival weight of male and female
macaroni penguins. Finally, there is evidence that the
contribution (by weight) of krill in the diets of macaroni
penguins began to decline significantly around 1991,
especially post-1995 (Reid & Croxall 2001).

Verity & Smetacek (1996) postulated that the archi-
tecture linking predators and prey may be better un-
derstood by viewing it as a product of how marine sys-
tems select the life-histories of the taxa that spearhead
system fluxes. This is the perspective from which we
have approached the questions addressed in this study.
Reid & Croxall (2001) proposed that the recent variabil-
ity evident in South Georgia top predator populations
signals a ‘system change' in the marine ecosystem, but
provided no mechanism that reasonably accounts for
the very tight temporal coupling in physical and biolog-
ical processes implied by such change. Although the
system is clearly too complex to attribute causality in its
variability to any single factor, the cohort senescence
hypothesis we advance identifies specific dynamics
that may explain why the system changed so abruptly
between the late 1980s and early 1990s. Another impli-
cation of this model is that the variability in climate and
sea ice conditions now apparent in the modern record
must have prevailed at some point(s) in Euphausia su-
perba's evolutionary past. Krill life-span may thus be
viewed as an evolved strategy to minimize mismatches
in this highly variable marine environment. However,
given the essential role of krill in this ecosystem, and
the rate at which climate is warming the region, life-
span may also be viewed as the ‘weak link' in the
mechanistic processes maintaining ecosystem structure
and function. This is because multiple age classes
buffer the population from rapid changes in abundance
(Siegel et al. 1998), yet the trend since the early 1980s
signals a transition towards populations in which age

class structure is dominated by single, strong cohorts
(e.g. Table 3). If our hypothesis is correct, this ecosys-
tem has become increasingly vulnerable to climate-
induced perturbations, as one could deduce that 2 or
more closely spaced senescence events would have
devastating consequences to its structure and function.
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