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Abstract: Primary productivity and associated biogeochemical fluxes within the Southern Ocean are globally 
significant, sensitive to change and poorly known compared to temperate marine ecosystems. We present 
seasonal time series data of chlorophyll a, primary productivity and in-water irradiance measured in the coastal 
waters of the Western Antarctica Peninsula and build upon existing models to provide a more optimum 
parameterization for the estimation of primary productivity in Antarctic coastal waters. These and other data 
provide strong evidence that bio-optical characteristics and phytoplankton productivity in Antarctic waters are 
different from temperate waters. For these waters we show that over 60% ofthe variability in primary production 
can be explained by the surface chlorophyll a concentration alone, a characteristic, which lends itself to remote 
sensing models. If chlorophyll a concentrations are accurately determined, then the largest source of error 
(13-1 8%) results from estimates of the photoadaptive variable (PBo,,>. Further, the overall magnitude of PBopt 
is low (median 1.09 mg C mg chl-l h-l) for these data compared to other regions and generally fits that expected 
for a cold water system. However, the variability of PBopt over the course of a season (0.4 to 3 mg C mg chl-I h-I) 
is not consistently correlated with other possible environmental parameters, such as chlorophyll, sea surface 
temperature, incident irradiance, day length, salinity, or taxonomic composition. Nonetheless, by tuning a 
standard depth-integrated primary productivity model to fit representative PBOp, values and the relatively uniform 
chlorophyll-normalized production profile found in these waters, we can improve the model to account for 
approximately 72-73% variability in primary production both for our data as well as for independent historic 
Antarctic data. 
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Introduction 

In order to understand and quantify global oceanic primary 
productivity and the flux of carbon in the world's oceans, 
considerable effort has been directed towards developing 
satellite algorithms to model this production. Such algorithms 
may be used to estimate the rate ofprimary productivity from 
the concentration ofbiomass in a water column using different 
scalesofintegration (e.g. depth, time, and wavelength). Aside 
from the simplest empirical correlation between chlorophyll 
and primary productivity (Smith et al. 1982), all primary 
productivity models generally invoke some photoadaptive 
variable that changes linearly with biomass concentration 
(e.g. themaximum carbon fixation rate within a water column 
PBopr, water-column averaged light utilization Y, etc.). Recently, 
Behrenfeld & Falkowski (1997a) have shown that given the 
same biomass concentrations, much of the error in primary 
productivity models is associated with uncertainties in the 
photoadaptive variable and not with the specific structure of 
the algorithm. These workers suggest that improvements in 
productivity algorithm performance will depend less on 
improved mathematical formulations and more on improved 
understanding of phytoplankton ecology and photoadaptive 

variability (Longhurst et al. 1995, Antoine et al. 1996, 
Behrenfeld & Falkowski 1997b). 

Antarctic coastal waters are much colder than temperate 
waters, and the annual range of temperature variability is 
relatively small (-2°C to +2"C). However, the Antarctic 
marine ecosystem is characterized by large variations in solar 
radiation both on a daily and a seasonal basis. Water column 
stability and the opposing influence of high winds and 
consequent deep mixing are also highly variable and have 
long been recognized as important controlling factors for 
phytoplankton biomass build-up (Hart 1934, Mitchell& Holm- 
Hansen 1991, Nelson & Smith 1991, Priddle et al. 1994). 
Indeed, wind forcing, atmospheric variability, sea ice and 
snow cover, and changing ocean optical properties combice to 
cause a highly variable light regime for Antarctic 
phytoplankton. In spite of often unfavourable conditions, 
high biomass concentrations (> 30 mg chl m J )  have been 
observed (Hart 1934, El-Sayed 1978, Smith et al. 1996a). 

How the Antarctic phytoplankton respond to this variable 
environment, both on a daily and seasonal basis, remains a key 
question in our attempt to understand primary productivity in 
this region. Past research has shown that the phytoplankton 
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are generally adapted to the low light and low temperatures 
(El-Sayed 1978, Tilzer et al. 1986, Smith & Sakshaug 1990, 
Smith et al. 1996a), but the phytoplankton ecology and 
inherent variability in photoadaptation is far from understood. 
The efficiency with which phytoplankton use light for primary 
production is determined both by the extent to which aquatic 
plants succeed in competing with the other components of the 
system for quanta and by the efficiency with which the 
absorbed light energy is converted to chemical energy. Here 
we make use of a time series of biological and optical data 
collected in conjunction with the Palmer Long-Term Ecological 
Research (LTER) project (Smith et al. 1995) to: 

1) investigate the underlying causes of photoadaptive 
variability of phytoplankton over the course of the 
growing season, 

2) evaluate the relative accuracy of productivity models, 
and 

3) inquire how best to parameterize a productivity model 
so as to enhance model performance in Antarctic coastal 
waters. 

Methods 

We analyse time series data obtained in 1994-95 and 1995- 
96 from two in-shore stations (B and E) near Palmer Station, 
Antarctica (64'465, 64'03'W) and from a larger area, the 
Palmer LTER large scale study grid, during a January- 
February 1995 cruise (Fig. 1). Nearshore sampling was 
conducted weekly from approximately November to the end 
of March (weather and ice permitting) for both field seasons 
at stations B and E (Waters & Smith 1992). Samples were 
collected at depths corresponding to the following percent 
surface irradiance as measured using a LICOR 193-SA 
Quantum Sensor: loo%, 55%, 27%, 11%, 5%, and 2%. 
Duplicate productivity samples were estimated for each light 
level by 24-hour simulated in situ incubations with I4C- 
bicarbonate (Vernet et al. 1996). The temperature of the 
incubations was maintained using the seawater intake system 
both at Palmer Station and during the cruise. For Palmer 
Station, the seawater is collected from the harbour near the 
station and is representative of the Standard Seawater 
Temperature (SST) within the near shore sampling grid. The 
SSTs at stations B and E are quite similar over the course of 
the season (mean standard deviation between stations of 
0.30"C) and demonstrate a general warming trend over the 
course of the season. For the cruise data, the temperature of 
the incubations is that of the water through which the ship is 
travelling and may not always represent the SST from which 
the phytoplankton were collected, but is accurate to +/-2°C. 

Total chlorophyll was quantified from filtered samples 
(Millipore HA filters) using standard fluorometric techniques 
on a digital Turner Fluorometer (Smith et al. 1981). 
Chlorophyll a (chl a)  was calculated by subtracting 
phaeopigment concentration determined by sample 
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Fig. 1. Location of Palmer Station and the LTER grid in 
reference to the Antarctic Peninsula. 

acidification. All samples were analysed within 2-3 days of 
collection. Additional algal pigments were determined by 
using high-performance liquid chromatography with a gradient 
system and a reverse-phase C- 18 column (Kozlowski et al. 
1995). The taxonomic composition was determined by 
analysing the ratio of specific pigments to chl a. The 
concentration of fucoxanthin (Fuco) was used to indicate 
diatoms, alloxanthin (Allo) for cryptophytes, chlorophyll b 
(chl b )  for green algae, and the sum of 19'- 
hexanoyloxyfucoxanthin and 1 9'- butanoyloxyfucoxanthin 
for chromophytes (Hex + But). Multiple regression was 
performed on the pigment concentrations (mg m-3) of the 
surface waters (depths corresponding to 100% and 55% light 
levels) against chl a concentrations for both 1994-95 and 
1995-96 seasons (Bidigare et al. 1986, Gieskes et al. 1988, 
Claustre et al. 1997). The equation used was: 

chl ( a )  = 1.58Fuco + 3.28Allo + 0.56(Hex + But) + 2.33chl b ( I )  

We assumed that multicolinearity of the input variables was 
negligible. This method only approximates dominant 
taxonomic groups in a phytoplankton assemblage. 

We also compiled a set of historical chl a and primary 
productivity data collected primarily from the Antarctic 
Peninsula region from 1972-90 (Smith et al. 1996a, Behrenfeld 
& Falkowski 1997b). The historical data-set consists of a 
relatively large number of chl a observations (n = 438) and a 
smaller subset of both chl a and primary productivity with 
sufficient ancillary data to generate depth-integrated values (n 
= 86) within the euphotic zone. When the euphotic depth (Ze,) 
was not provided for the data, we estimated Zeu to the 2% light 
level using a relationship developed from the LTER data (13= 
0.37, P < 0.01): 

Z,, = 48.8Ci0.36 
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The reliability of historical phytoplankton production data is 
of some concern, especially data collected prior to the mid 
1980s when "clean" techniques were not in use. Martin et al. 
(1 990) suggests that clean techniques are most important in 
open oligotrophic regions where iron is limiting (Martinet al. 
1990). As most of the data we discuss was obtained in coastal 
waters where iron is not considered to be limiting, we would 
expect little difference between "clean" and "classical" 
techniques for the data presented here. These historical data 
are discussed in detail by Smith et al. (1996a). 

Downwelling photosynthetically available radiation (400- 
700 nm) at the ocean surface, E,(O+, 400-700), is estimated 
for each 24-hour incubationperiodusingmeasurements taken 
from a spectroradiometer located at Palmer Station (Booth 
et al. 1995). This instrument provided hourly measurements 
ofdownwelling light integratedfrom 400400 nm. lrradiance 
is then extrapolated outto 700 nm using asite-specific modelled 
relationship between irradiance integrals from 400-600 vs 
400-700 nm: 

Ed(0',400-700) = 1.42E,(0',400-600) - 1.15 (3)  

This relationship has been derived using the atmospheric 
radiative transfer model SBDart (Gautier & Frouin 1992) with 
different modelled cloud layers, surface albedos, and solar 
zenith angles. These estimates of E,(O+) are highly correlated 
with measurements of scalar E,(O') made using a Biospherical 
Instrument QSR250 located near the primary productivity 
incubators at Palmer Station (rz = 0.82; data not shown). For 
the ship incubations, this correlation was used to estimate 
E,(O+, 400-700) from the scalar measurements of E,(O') made 

from a QSR250 onboard ship. 
A method of evaluating the relationship between rates of 

primary productivity and the in situ irradiance (P vs E) is to 
treat the water column as a compound photosynthetic system 
and estimate P vs E parameters for the entire water column 
(Talling 1957, Behrenfeld& Falkowski 1997b). This approach 
is different from P vs E curves measured under conditions of 
constant irradiance, because the productivity for each sample 
is measured under irradiance conditions that can vary from 
light-limiting to photoinhibiting over the course of an 
incubation. These in-water P vs E curves have different 
physiological interpretations and terminology than the short- 
term Pvs Ecurves (see Table I for terminology usedthroughout 
this paper). Vollenwieder ( 1  966) and, more recently, 
Behrenfeld & Falkowski (1997b) have discussed the 
differences between parameters used in time-integrated models 
and photosynthesis-irradiance variables (Vollenwieder 1 966, 
Behrenfeld & Falkowski 1997a). Measured values of 
productivity normalized by chl, PBZ, are normalized to the chl- 
specific maximum rate ofwater column photosynthesis, PBopt, 
and modelled as a function of the daily irradiance using the P 
vs E equation (Platt & Sathyendranath 1988, Behrenfeld & 
Falkowski 1997b): 

where E, is the irradiance at a given optical depth, Emu is the 
irradiance at the inflection point between light limitation and 
light saturation in the absence of photoinhibition, PBs is the 

Table 1. Terminology. 

Parameter Units Description 

chl a chl chlorophyll a 
Cz mg chl measured chl at depth z 
Ccx, mg chl m-* 
C5Il mg chl water column chl integrated to 50 m 

ppe" mg C m'? d-' 
ZC" m euphotic depth 
D h photoperiod 

water column chl integrated to euphotic depth 

mg chl m-' surface chl Cll 
water column primary productivity integrated to euphotic depth 

Q 

Ein rn-? d-I 
Ein m.* d-I 
Ein m-* d-l 
Ein m-z d-' 
"C 
mg C mg chl-I d-I 
mg C mg chl-' d-I 
mg C mg chl-I h-' 
mg C mg chl-l 1P 

mg C mg chl-' h-' 
(pEin rn" s-I)I 

(pEin rn-? s-I)' 
pEin m z  s-' 

daily downwelling irradiance (400-700 nni) incident upon the sea surface 
scalar irradiance (400-700 nm) incident upon the sea surface 
daily downwelling irradiance at optical depth,r 
daily downwelling irradiance at the inflection between light limitation & light saturation in absence of photoinhibition 
sea surface temperature 
chl-normalized primary productivity by discrete depth 
chl-normalized primary productivity by optical depth 
chl-normalized maximum rate of photosynthesis normalized by photoperiod for the water column 
chl-normalized maximum rate of photosynthesis normalized by photoperiod in absence of photoinhibition for water 
column 
chl-specific rate of light-limited photosynthesis in the water column 

Photoinhibition slope for the water column 
saturation parameter of photosynthesis for the water column 

F 
V' mg C d-'(mg light utilization index 

(dimensionless) 

chl m-? Ein m-* d-'}-I 

ratio of mean chl-normalized productivity in the water column to P"c,I,, 
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maximum normalized productivity in the absence of 
photomhibition, and p, is the variable slope for surface 
photoinhibition. Daily production was converted to hourly 
production using the photoperiod. Equation 4 is the same as 
Behrenfeld & Falkowski (1 997b), but explicitly contains the 
factor of PBs to PBopt required for proper scaling of the model. 
The observed patterns of PBz were fit to Eq. 4 using a Gauss- 
Newton non-linear curve fitting routine with Levenburg- 
Marquardt modifications (Zimmerman et al. 1987). Model I1 
regression techniques (Laws & Archie 198 1) were utilized 
throughout this manuscript in cases where both the independent 
and the dependent variable were subject to natural variability. 
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Fig. 2. Distribution of water column integrated chl a and water 
column integrated daily primary production for a. 1994-95 
season, b. 1995-96 season. The data from stations B and E 
have been averaged. The mean standard deviation between 
these stations is 25 mg chl m-2 for Ceu and 0.35 g C m-2 d-' for 
ppci 

Results and discussion 

Distribution of chlorophyll a and primary production 

Water column integrated values for both chl a (Ceu) and daily 
primary production (PP,,) over the 1994-95 and 1995-96 
field seasons at the inshore stations B and E are shown in 
Fig. 2. As shown, chl a and PPeU are highly correlated 
throughout the season. Both biomass and productivity show 
significant interannual variability with 1995-96 levels being 
higher than the 1994-95 levels. For the 1994-95 field season 
at Palmer Station, the median Ceu is 69 mg chl m-2 and ranges 
from 22 to 280 mg chl m-2. The median PPeU is 1 .O g C m-* d-' 
and ranges from 0.3 to over 4 g C m-' d-'. For 1995-96, the 
median Ceu is 10 1 mg chl m-2 and ranges from 20 up to 600 mg 
chl m-2 and the median PPeU is 1.5 g C m-* d-' and ranges from 
0.13 to over 6 g C m-2 d-'. Because biomass and productivity 
are lognormally distributed and blooms occur infrequently, 
the median values for Ceu and PPeU are significantly lower than 
the mean values. Figure 2 also shows that both years of data 
typically display two to three phytoplankton blooms during 
each growing season. One bloom generally occurs in January 
with additional blooms occurring in fall and/or spring. These 
blooms persist for approximately one to two weeks. This 
general pattern was also was observed in earlier time series 
data from these stations (Moline & Prezelin 1996). 

Vertical profiles of chl, productivity, and chl-normalized 
productivity (P",) for the Palmer nearshore and offshore 
LTER data are shown in Fig. 3a-c. The profiles have been 
normalized to the mean value in the profile and the shaded area 
represents one standard deviation from the mean. In general, 
the vertical structure of all three variables shows a maxima at 
or near the surface and a gradual decrease with depth. Also, 
the vertical structure of chl (Fig. 3a) is fairly uniform within 
the top two optical depths of the water column. Thus, the 
highest concentrations of chl are generally well within the 
layer of water that can be remotely sensed by an ocean colour 
satellite (i.e. one optical depth which is shown by the dotted 
lines in Fig. 3) (Gordon & McGluney 1975, Smith 1981). As 
the vertical structure of chl within the water column is fairly 
consistent amongst all profile data, the surface concentrations 
ofchl (C,) explains nearly 84% ofthe integrated water column 
chl variance with a log-log regression (Fig. 4), such that: 

C,, = 42.7Ci0.66 

This relationship is nearly identical both to that determined 
with the historical data and estimated using Eq. 2. Lines 2 and 
3 on Fig. 4 show almost identical relationships to Eq. 5a. 
However, these relationships differ significantly from that 
developed previously for high latitudes (Morel & Berthon 
1989), which underestimates integrated chl (Fig. 4, line 5). 

We also compared these results to relationships developed 
using chlorophyll integrated to 50 m, C,,, and found them also 
to be very similar (Holm-Hansen & Mitchell 1991). As 
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Chlorophyll 

Productivity 

Ch I-normal ized Productivity 

expected, C,, underestimates Ceu for low chl concentrations 
and overestimates Ceu for high chl concentrations (data not 
shown), such that: 

C,, = 2.17CL0i5 

While chl concentrations can remain high at depths beneath 
the euphotic zone (Holm-Hansen & Mitchell 199 l), generally 
the highest biomass concentrations are found near the surface 
where most of the primary production occurs. For these 
waters, the euphotic zone is generally found within the wind 
mixed layer, which is consistent with amore uniform vertical 
profile of chl. 

Primary productivity generally peaks at an optical depth of 
0.6 or when approximately 50-55% of the incoming E,(O+) 
has been attenuated (Fig. 3b). Hence, the rates of primary 
production at the surface appear to be photoinhibited when 
compared to the rates at the 55% light level. However, this 
peak generally occurs within the top optical depth ofthe water 
column, well within the depth from which a satellite signal can 
be received. The presence of a C, and primary productivity 
maxima is consistent with past findings in this region of the 
Southern Ocean (Smith et al. 1996a). The daily profile of PPeU 
decreases more rapidly with depth than either the chl or chl- 
normalized productivity profiles. 

When productivity is normalized to chl, photoperiod and 
optical depth (P",), the vertical profile still exhibits the same 
basic shape as the productivity profile (Fig. 3c). When 
compared to the vertical structure of data collected from all of 
world's oceans (Behrenfeld & Falkowski 1997b), the actual 
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Fig. 3. Mean vertical profiles of 177 stations from the Palmer 
nearshore and offshore area. Data have been normalized by the 
average concentration within the euphotic zone and are 
unitless. Shaded area represents one standard deviation from 
the mean and the dotted line represents the penetration depth of 
an ocean colour sensor (is. one optical depth). a. chl a, 
b. productivity, c. chl-normalized productivity, 

Fig. 4. Relationship between the surface chl concentrations (C,)) 
and the water-column integrated chl concentration (Ccu). 
Numbered lines represent: 1 .  these data Ccu = 42.7 C,,"66 (n  = 

185, r2 = 0.84), 2. historic data, 3.  C,, x Z,, (Eq. 2), 4. Holm- 
Hansen & Mitchell (1991) using Eq. 5b to convert C,,, to Ccu, 
5. Morel & Berthon ( 1  989) for high latitudes. 
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profiles of normalized productivity for the Palmer data are 
both much more uniform with depth and ofa lower magnitude 
than for the global data (Fig. 5a). The shadedregion in Fig. 5a 
represents the normalized productivity data used in the global 
productivity algorithm developed by Behrenfeld & Falkowski 
(1997a, Fig. 1 b). As shown, the PBZ profiles for the Antarctic 
data peak around 1 mg C mg chl-I hr-l, which is significantly 
lower than for other oceanic waters. Both the shape and the 
magnitude ofthe LTERdata shown in Fig. 5ahave significant 
implications for modelling primary productivity in Antarctic 

PF [mg C mg Chl-' h-'1 
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Fig. 5. a. Vertical profiles of chl-normalized productivity for the 
Antarctic data. Shaded region represents the data used in the 
global productivity algorithm developed by Behrenfeld & 
Falkowski (1997a, fig. Ib, p. 5). White squares represent the 
median for the Antarctic data. b. Datapoints are the median 
vertical profile from Fig. 5a plotted against the corresponding 
percent transmission of incident light. These are time- 
integrated P vs E parameters representing the entire water 
column and the line represents the fit to the data using Eq. 4. 

waters. 
If the median of the Palmer nearshore and offshore chl- 

normalizedproductivity data from Fig. 5a (white squares) are 
plotted against the corresponding percent transmission of 
incident irradiance, this relatively uniform vertical structure 
can be transformed into a type of time-integrated P vs E curve 
representing the water column. As shown in Fig. 5b, this 
curve has a steep slope indicative ofarelatively low Ek*, rising 
to a PBop, above 0.9 mg C mg chll h-l, followed by a gradual 
decreasing slope indicative of photoinhibition. Ek* is defined 
as the irradiance at the inflection point between light limitation 
and light saturation observed from measured PBz in the water 
column. On average, E,* occurs when approximhtely 7% of 
the surface light remains (E,*/E, = 0.07). Because Ek* generally 
occurs deep within the water column, much of the daily 
production occurs at irradiance levels above Ek*. In other 
words, chl-normalized productivity does not decrease as 
rapidly with depth as it does for phytoplankton in other regions 
ofthe world. Having both a low E,* and PBopl is characteristic 
of phytoplankton that are adapted to low-light conditions and/ 
or low water temperatures and is consistent with past studies 
from this region (Smith & Sakshaug 1990, Holm-Hansen & 
Mitchell 199 1, Smith et al. 1996b). 

For these Antarctic waters, the median PBopt for our data set 
is 1.09 mg C mg chl-' h-', with PBopt varying by nearly a factor 
of seven over the course of a season. Figure 6 shows a time 
series of PBopt as it varies over the course of the 1994-95 and 
1995-96 field seasons, respectively. The PBopt measured for 
stations B and E have been averaged (shading represents one 
standard deviation from the mean) and are highly variable 
over the course of a season. As shown in Fig. 6, no obvious 
seasonal trend is evident in PBopt for the two field seasons. For 
1994-95, PBopl approaches 1.5 in late December to early 
January and is less than 1 both before and after this period. For 
1995-96, PBopt is high (approaching2) from Novemberthrough 
December and then closer to 1 throughout the remainder ofthe 
year. Additionally, the variability in PBopl over the course of a 
season does not appear to follow the corresponding variability 
in productivity (Fig. 2b), nor does it follow the seasonal 
variability in water temperature, which shows a general 
warming trend throughout the season (Fig. 6). For example, 
PBopl is low for the 1994-95 mid-January phytoplankton 
bloom, relatively high for the early 1995-96 bloom, and only 
average forthe late 1995-96 bloom. Both the lower magnitude 
of PBopt and the more uniform vertical structure of normalized 
productivity are discussed below in the context of primary 
productivity models. 

Environmental influence on photoadaptation 

Behrenfeld & Falkowski (1997a, 1997b) have shown that 
model performance in estimating depth-integrated primary 
productivity is critically dependent on the ability to accurately 
represent the spacehime variability of the photoadaptive 
parameter, PBopl. They suggest that model improvement will 
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depend upon a mechanistic understanding of how 
environmental variability affects the physiological state of 
phytoplankton assemblages. While chl explains most of the 
variability in PP,,, variability in PBopt and the vertical distribution 
ofthe chl-normalized productivity can also significantly impact 
estimates of PP,". Here we seek to identify environmental 
variables that may explain the variability in these parameters 
and emphasize those that may be remotely sensed and could 
potentially allow more accurate modelling of PP,, from 
remotely sensed biomass. 

As photosynthesis is the result of an enzymatically controlled 
rate process, it is sensitive to ocean temperatures (Tilzer et af. 
1986). Recent estimates of global ocean primary production 
have used sea surface temperature (SST) to predict the 
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magnitude of a photoadaptive variable (Antoine & Morel 
1996, Behrenfeld & Falkowski 1997b). Such an approach is 
advantageous because SST can be determined remotely and 
used to delimit biogeochemical provinces for global modelling. 
Antarctic phytoplankton south of the Polar Front live in the 
coldest surface waters, with temperatures from nearly -2 to 
2°C. While some thermal adaptation may occur, PBopt ranges 
from 0.4-3 mg C mg chl-' h-I, which is in the range expected 
foracold water system (Smith et al. 1996b). However, within 
this limited temperature range, no significant relationship 
appears to exist between SST and PBopt for our nearshore and 
offshore data (Figs 6 & 7). The polynomial model described 
by Behrenfeld & Falkowski (1997a) (Fig. 7) tends to 
overestimate PBopt for the temperatures between 0 and 2°C and 
PBopt varies by a factor of seven within this temperature range. 
The poor fit ofthe global model to this low temperature range 
is not surprising since this is the temperature range where the 
global data set showed the greatest variability. Indeed, as 
shown in Fig. 7, no temperature trend within this low 
temperature range is evident in either our Palmer or cruise 
data. 

We also investigated several other environmental factors 
that may influence the variability in PBopt and may be remotely 
sensed. However, no single parameter or group ofparameters 
that we analysed (e.g. E,(O+), SST, chl, daylength, cloud ratio, 
salinity, mixed layer depth) produces a statistically significant 
relationship to PBopt. Furthermore, considering the variables 
together only explained up to 20% of the variability in PBopt 
using multiple regression. We considered that variable light 
histories might influence the PBopt of the phytoplankton, but 
found no relationship between E,(O+) from days prior to the 
incubation. No discernible relationship was found between 
Antarctic phytoplankton blooms and sea surface salinity based 
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Fig. 6. Measured estimates of PBop, over the field season averaged 
for stations B and E and shading represents one standard 
deviation from the mean for the two stations. Dotted line 
represents the SST of both stations B and E for each season. 
a. 1994-95 season, b. 1995-96 season. 
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Fig. 7. Measured estimates of PBop, vs sea surface temperature. 
The dashed line is that corresponding to Behrenfeld & 
Falkowski (1997a, Eq. 1 I ) .  
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Palmer data for when the water column is a. > 60% diatoms, 
b. > 60% cryptophytes, c. all Palmer data. The line for the 
diatoms (Fig. 8a) is significant (P < 0.01, Y* = 0.14). No 
significant trend was evident in the other two panels. 

upon water column stability from melting sea ice and coastal 
glaciers, but no discernable relationship was found. Past 
findings from this region also found that photosynthesis- 
irradiance parameters were poorly correlated to physical 
forcing and nutrient regimes (Moline et al. 1998). 

Because different species of phytoplankton in this region 
have different carbon to chl ratios (C:chl) and pigment- 
specific absorption coefficients (Brody et al. 1992), some of 
the variability in PBop,could be due to the presence of different 
bloom- forming phytoplankton (e.g. diatoms vs cryptophytes). 
Figure 8a & b show PBopt for sampling events from the inshore 
Palmer data when the phytoplankton were mainly diatoms 
(high in fucoxanthin/chl ratio) andmainly cryptophytes (high 
in alloxanthin/chl ratio), respectively. Figure 8c shows the 
relationship between PBopt and C, for all of the Palmer data 
regardless oftaxonomic composition. As shown, cryptophytes 
are estimated to be the dominant taxa (> 60%) in the water 
column less frequentlythan diatoms. Moreover, the very large 
blooms (C, > 10 mg chl m-3) tend be diatom blooms. 
Cryptophytes cover a smallerrange in PBopt and have amedian 
valueof 1.20andastandarddeviationof0.47 mgC mgchl-'h-I. 
The range in PBopt is greater for the diatoms, which vary from 
0.9-2.44 mg Cmg chl-' h-I, but there is no statistically significant 
difference between PBopt for the two taxa. In addition to the 
more numerous diatom blooms, another reason for the larger 
range in PBopt could be because different species ofdiatoms can 
be either larger or smaller than cryptophytes, which may 
contribute to different internal ratios of C:chl. Overthe course 
of a season, the dominant diatom taxa at Palmer Station can 
vary to include both large and small diatoms, which will 
similarly cause variance in PBopt. Such adifference may not be 
as evident from data collected over a restricted time period 
(Brody et af. 1992). While PB4pt tends to decrease with 
increasing C, on all three panels (Fig. 8a-c), the concentration 
of C, is not a good predictor of PBopt because PBopt still varies 
by a factor of seven for low chl concentrations. 

Another parameter that also plays a role in modelling 
primary productivity is the relationship of PBopt to the mean 
chl-normalized productivity (P",). The function F is used to 
describe the loss in potential photosynthesis due to light 
limitation and photoinhibition and can be estimated as the 
ratio of the mean PB, with depth versus PBopt (Wright 1959, 
Behrenfeld & Falkowski 1997a). While F does not explain 
much ofthe variability in PPeU (< 2%), F is a linear term in the 
model and hence is important in determining the overall 
magnitude of primary production. In the absence of 
photoinhibition, F should demonstrate an irradiance- 
dependence such that the F function is lower when E,(O') is 
low (more of the water column is light-limited), and F 
approaches amaximum when E,(O+) is high (more ofthe water 
column is light-saturated) (Behrenfeld & Falkowski 1997a). 
Because the vertical structure of chl-normalized productivity 
for these Antarctic data are much more uniform with depth 
(Fig. 5 ) ,  the phytoplankton are operating close to PBspt 
throughout much of the water column and consequently F 1s 
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higher (mean of 0.64) for these Antarctic data than the mean 
of 0.55 estimated for the global data-set (Behrenfeld & 
Falkowski 1997a). 

The F parameter is commonly compared to the ratio of 
E,(O+) to EK*, the light intensity corresponding to the 
intersection between the light-limited slope of primary 
productivity in the water column and PBopt (Fig. 9a). While our 
F is higherthan that derived from the global data-set (Behrenfeld 
& Falkowski 1997a), it is lower than the theoretical derivation 
of F assuming no photoinhibition (Talling 1957). Because 
E,* is low and often occurs near the bottom of the euphotic 
zone, the range of E,(O+)/ E,* extends to much higher values 
than previously published (i.e. > 25). The tight correlation 
shown in Fig 9a is expected because the vertical profile of chl- 
normalizedproduction, and thereby F, can be derivedfrom the 
photosynthesis-irradiance parameters used to describe the 
water column (i.e. E,*). However, this relationship (Fig. 9a) 
cannot be used to model F because either E,* or the ratio 
E,(O+)/ E,* must be known apriori. As shown in Fig. 9b, E,* 
is not readily estimated from E,(O+) for these data. E,* varies 
between 0 and 8 Ein m-' d-l and displays little relationship to 
E,(O+). The dashed line on Fig. 9b was developed for the 
global data-set (Behrenfeld & Falkowski 1997a) and does not 
fit these data. It is possible that this lack of correlation could 
be due to the extremely variable light environment to which 
these phytoplankton are exposed. 

The relationship between F and E,(O+) (Fig. 9c), however, 
is statistically significant (P < 0.01), although it explains little 
of the variability in F (Y* = 0.23). We derive the following 
empirical relationship: 

F =  E d  (0' 1 (6) 
E,(O') t 11.77 

Optimization ofprimaiy productivity model 

Behrenfeld& Falkowski (1997a) have shown that, in general, 
depth-integrated models can be reduced to a relationship 
describing depth-integrated primary productivity from 
phytoplankton biomass (Ce,), a photoadaptive variable (PBo,,), 
an irradiance-dependent function (F), and daylength (D). 
Further, they show that depth-integrated productivity models 

Fig. 9. a. F, which represents the mean chl-normalized 
productivity with depth vs PBop,, as a function of E,(O+)/E,*. 
The thick line represents the best f i t  to this data. The thin line 
represents the fit by Talling (1997). Dashed line represents the 
fit using eqs. 30 & 3 1 from Behrenfeld & Falkowski (1997b). 
b. Comparison of the surface irradiance E,(O+) shown as a 
function of EK*. Dashed line represents the fit using eq. 3 1 
from Behrenfeld & Falkowski (1997b). c. Comparison of the 
surface irradiance (E,(O+) and the function F. Solid line 
represent fit using Eq. 6 (r2 = 0.23, P < 0.01). Dashed line 
represents the fit to the global data set (Behrenfeld & 
Falkowski 1997b, eq. 30). 

are fundamentally synonymous and most of the variability in 
estimating primary productivity involved differences in the 
input biomass andestimate ofphotoadaptive variability. Hence, 
more complex primary productivity models, involving 
additional levels of integration (i.e. time, wavelength, depth), 
are not likely to explain significantly more ofthe variability in 
primary productivity until the photoadaptive variability is 
better characterized. As discussed above, in investigating the 
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environmental influences on photoadaptive variability, we 
foundno consistent predictor or set of predictors that could be 
used to reliably predict PBopt for these Antarctic waters. 

We utilize the standard depth-integrated model structure 
(Behrenfeld & Falkowski 1997b) and tune the model to fit the 
Antarctic data (both the cruise data and the inshore Palmer 
data): 

For our parameterization of the model, we use F estimated 
from E,(O') (Eq. 6), the median value for PBopt (1.09 mg C mg 
chl-l h-I), and Zeu derived from C, (Eq. 2). Using measured 
values of C, and E,(O+), this model explains nearly 72% ofthe 
variability in the data on a log scale and closely follows a 1 : 1 
correspondence line (Fig. 10a). If we further simplify the 
model and use a constant F of 0.64, the model only loses 5% 
of predictive capability. Because the median PBopt ( 1 .O 1 mg C 
mg chl-I h-I) for the large blooms is very similar to the median 
PBopt (1.09 mg C mg chl-' h-I) from all nearshore and offshore 
LTERdata, our model is more effective for days with extremely 
high PPeu. This is important because a significant fraction of 
seasonal production occurs under high bloom conditions. 

In addition to applying this model to the LTER data from 
which it was derived, we also applied it to historic primary 
productivity data from the Antarctic (Fig. lob). The historic 
data shown here were collected in the Antarctic Peninsula 
region and South Indian Sector of the Southern Ocean from 
1972-90 (Smith et al. 1996a). When irradiance data was not 
available within this data set, a constant F of 0.64 was used in 
the model instead of Eq. 6. Even without irradiance data, the 
model performed just as well on the historic data as on the 
LTER data and explained 73% of the variability in PPeu. 
Moreover, we find nearly a 1 : 1 correspondence between the 
measured and modelled data (m = 1.02, b = -0.1 1). It will be 
of interest to test the model for other regions of the Southern 
Ocean. 

Table I1 presents a comparison of our model parameterization 
(Eq. 7) with various published algorithms. The VGPM model 
developed for the global oceans (Behrenfeld & Falkowski 
1997b) in its original form explains approximately 6 1 % ofthe 
variability for the Antarctic data and tends to overestimate 
productivity for low PPeu and underestimate for high PPeu. In 
fact, for these waters it explains less of the variability in PPeU 
than a simple regression on C,. We believe this is primarily 
due to three sources of error when applying the model to 
Antarctic waters: 

1) the equation relating PBopt and SST overpredicts PBopt at 

2 )  the F function is generally underestimated (Fig. 9), and 

3) therelationship (Morel& Berthon 1989)usedto estimate 

Using measured C, and a constant light utilization index y~ 

SST > 1 "C (Fig. 7), 

Zeu generally underestimates Ceu (Fig. 4). 

(Morel 199 1) the Laboratoire de Physique et Chimie Marines 
(LPCM) model (Antoine et al. 1996) explains 69% of the 
variability in the data. For these data,v (which is related to the 
water column averaged functional absorption cross-section 
for photosynthetic carbon fixation y~') varies from 0.2 to 2 and 
has a median value of 0.56 mg C m-2 d-' (mg chl m-2 Ein m-2 
d-')-l. This is higher than that estimated for temperate waters 
and near the average I+J determined previously for this region 
(Claustre et al. 1997). The parameter y~ can be related to PBopt 
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Fig. 10. Measured primary productivity vs modelled primary 
productivity using Eq. 7 for the a. LTER data (n = 186, r2= 
0.72, m = 0.96), b. Historic data (Smith et al. 1996) ( n  = 82, 
r2 = 0.73, m = 1.09). 
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Table 11. Statistical comparison of measured vs modelled daily primary production. 

Model Formulation Regression statistics' Source 
r2 m,b 

Antarctic Model' PPCL, = P",,p, D ZC" Cll F 0.72 0.96, 0.1 IEq. 61 
p9.. = c,, 0.62 

0.28 
PPCt> = PBop, 0.18 

C" 
Zeu ppe<, = =<" 

PB*p 
F PP-,, = F 0.023 
D PPFr, = D 0.02 

VGPM Model ppe" = p"<,p, D ZG" Cl,F 0.61 0.92, 0.2 [Behrenfeld & Falkowski 1997al 
LPCM Model PPC" = 'I' q,, c,, Ed@+) 0.69 1.06, -0.2 [Antoine et al. 19961 

chl Regression PPeu = 5 13 C,,''725 0.62 1.0, 0 [Fig. 101 

'log-linear regressions were performed using Model I1 regression techniques (Laws & Archie 1981), where rk correlation coefficient, m = slope, b = 

intercept of regression. 
lEach component of this model was individually regressed against PPC+ as presented in italics below. 
'For this parameter, linear regression had a higher correlation to PP,, than a log-linear regression. 

by the following equation: 

Because PBOp, and F can nearly be approximated as constants 
for this region (Figs 7 & 9), using a photoadaptive variable 
that represents the entire water column (w) is nearly as 
effective as modelling with more specific formulations of PBopt 
and F. Moreover, because PBopt and y~ are so closely related, 
the possible environmental influences discussed in the previous 
section are applicable to both photoadaptive variables and no 
environmental predictors of y were found (data not shown). 

The simplest primary productivity model is a log-linear 
regression between rates of primary production and chl a. 
Consistent with earlier reports for Antarctic waters (Minas & 
Minas 1992, Moline & Prezelin 1996, Smith et al. 1996a), 
biomass seems to be a relatively good proxy for primary 
productivity (Fig. 11). For the LTER data, the best-fit 
relationship between C, and PPeu explains approximately 62% 
of the variability in PP,". As shown in Fig. 1 1 ,  the lines 
labelled 1-3 are all from datacollected in the Antarctic and are 
quite distinct from line 4, which is from low latitudes in the 
Atlantic (Falkowski et al. 1998). Ifthe low latitude regression 
were used for high latitude Antarctic data, PPeU would be 
overestimated at low C, and underestimated at high C,. This 
is probably due to the more uniform chl distribution with depth 
found in Antarctic waters. If chl is low at the surface, then it 
remains low throughout the water column (i.e. few deep chl 
maxima) and similarly ifchl a is high at the surface, it remains 
high throughout the water column. Our tuned depth-integrated 
model (Eq. 7) explains only 10% more of the variability in 
PPeU than this simple chl a regression. Thus, the accuracy of 
any depth-integrated primary productivity model for this 
region is primarily dependent on determining the appropriate 
biomass concentration and the correct relationship between 
PPeU and Ceu. 

Conclusions 

Using time series data of chlorophyll and daily net primary 
production measured in the coastal waters of Palmer Station, 
Antarctic Peninsula, we have evaluated models to estimate 
photoadaptive variability and rates of primary production for 
Antarctic coastal waters. Over 62% of the variability in PPeU 
(mg C m-* d-') can be explained by chl alone (Fig. 2). Only 
10% more ofthe variability in primary productivity(72%) can 
be explained by using measured C, and E,(O+) with site- 
specific parameterizations of the standard depth integrated 
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Fig. 11. Best f i t  relationship between water-column integrated 
productivity, PPcu, and surface chl, C,,, for: 1) Holm-Hansen & 
Mitchell (1991) using Ca, instead of C,,, 2) These LTER data, 
such that PPcu = 512 C,, ( I A 5  (n  = 186, r2= 0.62), 3) Historic 
Antarctic data, 4) Bermuda Atlantic Time-Series and Mid- 
Atlantic Bight data using CB,% instead of C,, (Falkowski et a/. 
1998). 
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model (Behrenfeld& Falkowski 1997a). Our parameterization 
of the model (Eq. 7) takes into account three factors that are 
unique to this region compared to other regions (Behrenfeld 
& Falkowski 1997b): 

1) higher integrated chl concentration predicted from C, 

2) low magnitude of PBopt (Fig. 5) ,  and 

3) more uniform distribution of chl-normalized 
productivity, which is manifested in the model by a 
higher F function (Fig. 9). 

Not only does this model parameterization perform well on 
the LTERdata from which itwas derived, it also explains 73% 
of the variability in the historic PPeu data collected in these 
waters (Fig. 10). 

A better understanding of PBopt could potentially improve 
the model and explain up to 13% more of the variability in 
PPeU. W i l e  low, PBnpt still varies by a factor of seven during 
the course ofa season (Fig. 6) .  However, no single parameter 
or group ofparameters (e.g. SST, E,(O+), chl, daylength, cloud 
ratio, salinity, mixed layer depth) was found to be a significant 
predictor of PBnpl. Contrary to expectation, we found no 
significant relationship between SSTand PBopt(Fig. 7) although, 
as expected, PBopt is low compared to global values. In this 
region, phytoplankton exist in very cold waters and over a 
relatively restricted range (-2 to 2°C). Furthermore, both 
diatoms and cryptophytes exhibit a fairly large range in PBopt 
(Fig. 8), such that no significant difference was found in the 
magnitude of PBopt between these two taxa. Under very large 
bloom conditions (C, > 10 mg chl m-3), the phytoplankton in 
Antarctic coastal waters tend to be diatoms and generally 
exhibit a lower range of PBopt centred near the median value of 
1.09 mg C mg chl-' h-' . 

An interesting result ofthis analysis is that irradiance seems 
toplay a very limited role in estimating PPeU and only improves 
the performance of our primary productivity model by 5%. 
Furthermore, very little correlation was evident between surface 
irradiance and the photoadaptive variables, PBop, and F. If 
these parameters are dependent on enzymatic activity, their 
variability may depend on temperature and nutrient availability 
and not adaptations to light (Prezelin et al. 1991). Previous 
experiments on phytoplankton from the cold and often well- 
mixed waters ofthe Antarctic have shown them to have slower 
cellular responses than their temperate counterparts. For 
example, Antarctic phytoplankton exhibit low respiration 
rates (Tilzer et al. 1986), slow growth rates (Nelson & Smith 
1991), and an absence of the ability to repair damage to 
photosynthetic systems due to UV exposure (Neale et al. 
1998). Greater understanding of the variability in these 
photoadaptive parameters could lead to further improvements 
in the primary production model. 

(Fig. 4), 
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