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ver the austral spring/summer periods from November
1991 through January 1994, water column profiles were

obtained at the Long-Term Ecological Research (LTER) pro-
gram station B (Sta B in figure 1) for concurrent determina-
tions of physical and biological parameters related to
phytoplankton dynamics. A Seabird® CTD (SEACAT SBE 19-
03) was profiled free-fall from surface to near bottom from a
Mark V Zodiac®. The instrument samples at a rate of 2 hertz.
At a lowering rate of approximately 5 meters per second,
approximately four samples per meter were retrieved. Along
with the physical measurements, 615 discrete water column
samples were collected for pigment determination in 5-liter
GoFlo bottles within a few hours of solar noon. Samples were
transported in dark bottles within 30 minutes of collection to
Palmer Station (figure 1) for analyses. A more detailed descrip-
tion of the sampling strategy is given by Moline and Prézelin
(1996, 1997).

Aliquots of all whole-water samples were analyzed for the
algal pigments using reverse-phase high-performance liquid
chromatography procedures of Wright et al. (1991). Specific
details of the sample processing and pigment identification
are described elsewhere (Moline and Prézelin 1996; Claustre,
Moline, and Prézelin 1997). Pigment data were used to esti-
mate phytoplankton standing crop (chlorophyll-a) and as
chemotaxonomic markers to differentiate between algal
groups. The four taxonomic groups that dominated the phy-
toplankton communities in the study area over the 3 years
were diatoms, prymnesiophytes, cryptophytes, and chloro-
phytes. From the class-specific accessory pigments and the
total chlorophyll-a, the percentage contribution of each taxo-
nomic group to the overall biomass was calculated using mul-
tiple regression techniques (Everitt et al. 1990; Claustre et al.

1997). This approach indicated that the dominant accessory
pigments (fucoxanthin, alloxanthin, 19'-hexanoyloxyfucox-
athin (HF) + 19'-butanoyloxyfucoxathin (BF) and chlorophyll-

O

Figure 1. Location of LTER sampling station B (64°46.45'S 64°03.27'W)
with respect to Palmer Station and the Antarctic Peninsula (inset). (km
denotes kilometer.)
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b) explained 99 percent of the variability
in the measured chlorophyll-a (figure
2A).

High interannual variability in peak
phytoplankton standing stock [2.3–29.2
milligrams of chlorophyll-a per cubic
meter (mg chl a m–3)] and integrated
chlorophyll-a was evident during the 3-
year sampling period from 1991 to 1994
(figure 2B). Seasonal and annual pat-
terns were primarily driven by water
column stability influenced by local
wind stress, which varied dramatically
between years (Moline and Prézelin
1996). In 1991–1992, during an extend-
ed period of low-velocity winds, the
depth of the mixed layer shallowed and
a large bloom developed (figure 2B, Mo-
line and Prézelin 1996, 1997; Moline et
al. 1997). In contrast, during the 1992–
1993 season, continual daily average
wind speeds greater than 12 meters per
second resulted in low biomass accu-
mulation (figure 2B). Low biomass was
measured after the ice broke out during
the 1993–1994 season as a result of high
wind speeds. As with the first year, how-
ever, the surface bloom in December
1993 was associated with periods of low
wind stress (Moline and Prézelin 1996).

Despite high interannual variability
in chlorophyll-a at station B from 1991
to 1994, a constant and repeated pat-
tern in the succession of the phy-
toplankton groups was observed.
Prymnesiophytes (as indicated by
HF+BF) accounted for up to 50 percent
of the biomass in the early spring (1993–
1994), during periods of substantial ice
cover (figure 3). By November in all 3
years, the majority of the phytoplank-
ton biomass was composed of primarily
(up to 90 percent) diatoms (fucoxan-
thin). These populations dramatically
declined in December all 3 years. Dia-
toms were replaced by significant sur-
face populations (>75 percent) of
cryptophytes during the summers (fig-
ure 3). Chlorophytes were ubiquitous
throughout the study period; however,
they never accounted for more than 20
percent of the total phytoplankton bio-
mass.

The sequence of dominance (and
decline) of diatoms, prymnesiophytes,
and chlorophytes could not be
explained by hydrographic, nutrient

Figure 2. A. Measured chlorophyll-a versus predicted chlorophyll-a from multiple regression
analyses (see text) on all samples collected from LTER nearshore stations B and E from 1991 to
1994 (see Moline and Prézelin 1996). B. Interannual variation in the depth-integrated chloro-
phyll-a at station B from 1991 to 1994.
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fields and light fields. The transition to cryptophytes, however,
coincided with the initiation of glacial meltwater input to the
coastal waters and was significantly dependent (MANOVA,
p<<0.001) on the relatively high-temperature/low-salinity
water characteristic of the meltwater lens (Moline unpub-
lished data).

The occurrence of cryptophytes also correlated with the
daily mean air temperature measured during the 3-year study
period (figure 3B). When mean air temperatures exceeded the
freezing point, the percentage of cryptophytes to the total bio-
mass increased significantly from approximately 5 percent to
approximately 15 percent (ANOVA; P<0.05). As the mean tem-
perature increased to 1–2°C, a highly significant increase was
noted in the percentage cryptophytes to approximately 30
percent (ANOVA; P<<0.001). Overall, the difference was highly
significant between samples greater than 0°C and those less
than 0°C (ANOVA; P<<0.001), and this finding supported the
contention that changes in phytoplankton community struc-
ture were in response to the formation of glacial meltwater.

Mean air temperatures along the Antarctic Peninsula have
increased significantly (2–3°C) over the past 50 years (King
1994). The increased temperature will likely alter the spatial
extent and timing of glacial meltwater runoff, which is already
a significant geographic feature of the Antarctic Peninsula dur-
ing summer months, extending 80–100 kilometers offshore.

We hypothesize that,
over large timescales, the
consistency in seasonal
phytoplankton succession
may prove a more robust
predictor for “creeping”
environmental change in
antarctic coastal waters
than will highly variable
biomass and primary pro-
duction indices.
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Figure 3. The seasonal variation in depth distribution of the percentage of total chlorophyll-a concentration
by four phytoplankton groups at LTER station B from 1991 to 1994. Note the differences in the percentage
scale for each taxonomic group. Overlayed on the contours for chlorophytes is the depth/time distribution of
discrete samples (filled circles).


