
 Spring 2009

Feature: Getting started with eXist and XQuery
- Wade Sheldon (GCE)

Introduction

Two recent LTER workshops were convened to plan and develop
ProjectDB, a cross-site research project description language and
database (Walsh and Downing, 2008). During the first workshop
participants agreed to use eXist, an open source native XML database
(http://exist.sourceforge.net/), as the back-end system for storing and
retrieving research project documents. This database was primarily
chosen to leverage ongoing software development work at CAP LTER that
uses eXist, but excellent query performance, built-in support for both
REST and SOAP web service interfaces, and simplicity of configuration and
administration were also influential factors.

The combination of eXist and XQuery (the XML query language used by
eXist) proved to be extremely effective for ProjectDB, exceeding all
expectations. A working group of six Information Managers and a CAP
software developer designed and implemented a complete system for
storing, querying, summarizing and displaying research project
documents in just a few days, including RESTful web services to support
all the primary use cases identified during the planning workshop (Gries
et al.). The rapid success of this development effort has sparked interest
in eXist and XQuery across the LTER IM community, and this article
presents an overview and brief guidelines on how to get started using
this new XML technology.

eXist Database

Many options are currently available for storing and searching XML
documents. Recent versions of major relational database management
systems support XML storage and retrieval natively, and software
packages like the KNB Metacat
(http://knb.ecoinformatics.org/software/metacat/) XML-enable
conventional relational databases by decomposing nodes into text strings
and providing XML-centric document models and supporting technology.
In contrast, eXist represents a new breed of native XML databases (NXD)
that use XML documents as logical units of storage rather than rows in a
table, and employ XML-based specifications and technology for all
operations (e.g. XQuery, XPath, XML Infoset, XSLT). Other NXDs include
Apache Xindice (http://xml.apache.org/xindice/), BaseX
(http://basex.org/) and OZONE (http://www.ozone-db.org/), but eXist
stands out due to its excellent XQuery implementation, built-in support
for a broad range of web technology standards, and active developer
community.

The eXist database is implemented entirely in Java, so it can be run on
most computer platforms. The only dependency is that a complete JDK
(Java Platform) 1.4.2 or higher must be present on the system prior to
running the installer .jar file. A simple Java web server (Jetty,
http://www.mortbay.org/jetty/) is installed by default to provide web-
based access and REST/SOAP support, but eXist can also be integrated
into an existing Apache Tomcat installation using a provided .war file.
Once installed, the database can be administered using XQuery-based
web forms or a Java client application. Fine-grained access control is
supported, and users and groups can be defined and managed internally
by eXist or optionally retrieved from an LDAP server. In addition to the
supplied interfaces, eXist can be configured as a data source in the
oXygen XML editor (see
http://www.oxygenxml.com/demo/eXist/eXist.html), which proved to be
invaluable during the ProjectDB development workshop.

Storing and retrieving XML data using eXist is extremely easy and fast
compared to relational databases, because documents are kept intact.
XML files are simply uploaded or downloaded using the management
interfaces, HTTP GET or PUT commands, or by clicking on files in the
oXygen database connection view. Documents can be stored in a single
root directory or organized into hierarchical “collections”, similar to
directories in a file system. Besides organizing documents, collections are
useful for restricting or “scoping” queries to include a specific subset of

documents and for providing different levels of access for specific users
or groups. XML documents must be well formed to be stored, but are not
validated by default; however, both implicit validation (rejection of invalid
documents) and explicit validation (validation report after insertion) can
be configured, if desired. Non-XML documents can also be stored in
eXist, including XQuery files, XSL and CSS style sheets, HTML and
JavaScript files, and binary files like images, making eXist ideally suited as
a back-end for web applications and content management systems.

As already mentioned, one of eXist’s strengths is built-in support for
many web technologies, including XQuery, XSLT (1.0 and 2.0), REST,
SOAP, XMLRPC and WebDAV. For ProjectDB, we focused on eXist’s REST
interface which allows documents to be stored and retrieved, XQueries
run, and XSLT transforms performed using parameterized URLs (i.e. HTTP
GET requests) or other standard HTTP commands (i.e. POST, PUT, DELETE)
and HTTP authentication. Collections are automatically mapped as virtual
directories below the base directory (i.e. /exist/rest/db/), providing
logical access to any files stored in the system. For example, the
following URL retrieves a GCE research project document from the LNO
eXist database using the REST
API: http://amble.lternet.edu:8080/exist/rest/db/projects/data/gce/gce_
hammoc...

XQuery Language

As mentioned above, XQuery is the primary language used to search and
manipulate data stored in eXist and other native XML databases. The
XQuery 1.0 specification was accepted as a formal W3C recommendation
in January 2007, along with 7 related specifications including XQueryX
1.0, XSLT 2.0 and XPath 2.0. XQuery provides many of the same
capabilities for working with XML documents and collections that the SQL
Data Modeling Language provides for relational databases, including
searching, filtering, joining and re-factoring data dynamically. XQuery 1.0
leverages the document model, document navigation syntax and function
library of XPath 2.0, as does XSLT 2.0. Unlike XSLT, however, XQuery is
not itself an XML dialect so queries are simpler to read and write and
special characters do not need to be encoded.

Simple queries can be performed using XPath syntax alone (i.e. called
path queries), but most XQueries are written as FLWOR (pronounced
flower) expressions to provide more control over the data returned.

FLWOR is an acronym for For, Let, Where, Order by and Return, which are
the keywords used for statements in the query definition. The For
statement is used to define a set of nodes to iterate through when
evaluating the expression (i.e. collection, document, or specified part of a
document or collection of documents). The Let statement is used to bind
XML document nodes or other data to a variable, for programming
convenience and more efficient evaluation. Note that multiple For and Let
statements can be used in a single query, and that Let statements can
precede For statements unless they reference nodes in the iteration. The
Where and Order by statements restrict nodes based on specified criteria
and control ordering of the results, resp., similarly to their SQL
counterparts. The Return statement, which is the only statement that is
actually required in any XQuery, specifies the structure of the output
document. XQueries can return an XML fragment, XML document, HTML,
or plain text depending on the query implementation. Specific examples
from the ProjectDB development effort are described below, and many
more examples are provided in the XQuery Wikibook online
(http://en.wikibooks.org/wiki/XQuery) and various XQuery references
(Walmsley, 2007).

ProjectDB Examples

A number of XQuery files were written during and after the ProjectDB
development workshop to support the targeted web services. These files
are stored in the LNO eXist database and archived in the LNO SVN server,
and are all available for review and customization (see
http://intranet.lternet.edu/im/project/LTERProjectDatabase/userguide
for more information). These queries range from simple path queries to
complex multi-parameter searches with derived return documents, and
all contain code documentation and comments.

For example, getProjectById.xql searches all research project documents
and retrieves the document with an lter:researchProject id attribute
matching a specified id parameter, using the FLWOR expression below
(abbreviated for illustration):

 xquery version "1.0"; let $id:= request:get-
parameter("id",””) for $researchProject in
collection('/db/projects/data')/lter:researchProject[@i
d = $id] return $researchProject

In this query, the let $id… statement binds the variable $id to the
query input parameter $id, defaulting to “” (empty string) if no id
parameter is provided as input. Note that request:get-parameter is
an eXist function used to interact with the web server session to retrieve
parameters from the HTTP request. The for $researchProject …
statement iterates through the collection of documents specified by the
path statement, binding nodes from each iteration to the variable
$researchProject . The XPath collection function is used in this
query to search across all XML documents in the corresponding collection
in the eXist database. Note that in this query, [@id = $id] defines a
restriction in the XPath, so that only documents with an id attribute in
lter:researchProject matching the input “id” will be returned. The
return … statement simply references the $researchProject
variable, resulting in the entire node set (research project document in
this case) being returned without modification as output.

A more complex example is provided by getProjectsByKeyword.xql, which
returns a derived XML document summarizing content from all research
project documents matching site and keyword search parameters:

 xquery version "1.0";   (: get input parameters from
http request :) let $keyword := request:get-
parameter("keyword","") let $keywordSet := request:get-
parameter("keywordSet","") let $siteId := request:get-
parameter("siteId", "") return if (string-
length($keyword) > 0) then (<projects> { for $p in
collection(concat('/db/projects/data/', lower-
case($siteId)))/lter:researchProject let $title :=
$p/title/text() let $idstr := $p/@id let $time
:= $p/coverage/temporalCoverage let $kw :=
if(string-length($keywordSet)>0) then
$p/keywordSet[@name=$keywordSet] else
$p/keywordSet where
matches($kw/keyword,$keyword,'i') order by
$idstr return <project
id="{$idstr}"> <title>{$title}</title> {for $c
in $p/creator let $individual :=
$c/individualName let $userid :=
$c/userId return <creator>{$individual}{$userid
}</creator>} {for $ap in
$p/associatedParty let $ap_name :=

$ap/individualName let $ap_id := $ap/userId let
$role :=
$ap/role return <associatedParty>{$ap_name}{$ap
_id}{$role} </associatedParty>} <keywordSet>{f
or $k in $p/keywordSet/keyword let $kwd :=
$k/text() return <keyword>{$kwd}</keyword>}
 </keywordSet> {$time} </project> } </projects
>) else (<projects/>)

In this query, three input parameters are supported (“site”, ”keywordSet”
and ”keyword”), but only the “keyword” parameter is required as dictated
by the if-then-else logic and empty string test. The “site” parameter is
used in the XPath to restrict the for $p in … statement to a specific
site collection in the LNO eXist database, by concatenating the $site
string to the base collection path (i.e. because a separate collection in
/db/projects/data was created for each participating site during the
workshop, e.g. /db/projects/data/cap). If the “site” parameter is
omitted or blank a double slash appears in the path, effectively removing
the site restriction so that all documents in /db/projects/data are
searched (i.e. because in XPath syntax, a double slash denotes a child
node at any depth level below the parent node).

Following the for $p in … statement that sets up the main iteration,
several let statements are defined to bind nodes to variables for use in
generating the output document ($title, $idstr, $time). The
statement

 let $kw := if(string-length($keywordSet)>0) then
$p/keywordSet[@name=$keywordSet] else $p/keywordSet

employs if-then-else logic to bind $kw to a different node-set depending
on whether a keywordSet was specified as input or not (i.e. based on
non-zero string length of $keywordSet). If a keywordSet was
specified as input then a restriction is included in the path, otherwise no
restriction is used so keywords in any keywordSet will be searched.

The statement where matches($kw/keyword,$keyword,'i')
applies the main keyword match restriction. Only documents with
keyword text nodes matching the input parameter keyword, based on a
case-insensitive regular expression match (i.e. indicated by the i flag),
will be returned from the query. The order by $idstr statement then

specifies that documents should be returned ordered by
researchProject id.

The code in the return statement defines the structure for the query
results, in this case an XML document that contains a subset of content
from each matched project document in a separate <project> element,
nested within a <projects> root element. Variables from the for and
let statements in the XQuery are denoted in the return schema by curly
braces, and these variables are combined with direct XML element
constructors (i.e. literal XML tags) to generate the desired output. Note
that additional XQueries are embedded in the return section, also
denoted by curly braces, to generate nested elements containing a
specific subset of the elements in the original documents (e.g. portions of
the creator and associatedParty nodes). In contrast, other nodes (e.g.
coverage/temporalCoverage denoted by {$time}) are copied intact
to the output document.

The syntax for running these two example XQueries in the LNO eXist
database using the REST API is as follows:

getProjectById.xql: http://amble.lternet.edu:8080/exist/rest/db/projects/
util/xquery/getProj...

getProjectsByKeyword.xql: http://amble.lternet.edu:8080/exist/rest/db/p
rojects/util/xquery/getProj...? keyword=Temperature

Note that the queries stored in eXist are configured to return results
using an XHTML doctype without an XML declaration for broadest web
browser compatibility, but viewing the page source will display the XML
output. Also note that query results can be styled on the server if an XSL
URL is specified using the “_xsl” parameter, as follows:

http://amble.lternet.edu:8080/exist/rest/db/projects/util/xquery/getPro
j...

When the XSL file is stored in an collection in the same eXist database as
the XQuery, as in this case, the relative database path to the XSL can be
used; however, a fully-qualified URL for an external XSL file can also be
specified if XSL files are stored on a web server and not in eXist. More
complex XSL stylesheets (e.g. containing import directives, parameters,
and other advanced options) can also be referenced to display query
results in a complete web site template, as in the following GCE example:

http://amble.lternet.edu:8080/exist/rest/db/projects/util/xquery/getPro
j...

Concluding Remarks

The eXist XML database and XQuery language are powerful tools for
working with XML, but they are also relatively easy to use making them
well suited to rapid application development and deployment. The simple
installation, low resource requirements, and low administrative overhead
of eXist also makes it a very practical tool for use in local LTER site
information systems. In informal performance testing, queries of
thousands of complex research project and EML documents in eXist took
only seconds to run, indicating that this database should scale well for
production use.

Given these strengths, the question of how eXist compares to Metacat
naturally arises. As mentioned in the introduction, Metacat is a hybrid
XML-RDBMS system, making it inherently more complex to install and
administer than eXist and requiring far more system resources. The
back-end RDBMS (e.g. Oracle, Postgres, etc.), a Java Servlet engine
(Apache Tomcat) and the Metacat Java software need to be installed,
configured and administered separately. In addition, the pathquery
syntax used to query the database is unique to Metacat (see
http://knb.ecoinformatics.org/software/metacat/metacatquery.html),
and considerably less flexible than XQuery. The overall structure of the
return document is also fairly rigid, generally requiring an extra XSL
transformation step to produce useful output. Lastly, Metacat relies on
versioned document ids for managing files and does not support
collections or other organizational structures, requiring much more
planning and discipline when storing documents and limiting options for
restricting searches.

I believe that these characteristics limit the utility of Metacat as a general
repository for XML and other files needed to build web applications and
web services, and make it less suitable for collaborative application
development than eXist (e.g. the LTER Research Projects database).
However, Metacat provides very important benefits over eXist for
archiving XML documents, including versioning, strong validation,
replication, interoperability with other relevant EcoInformatics software
(EcoGrid, Morpho, Kepler, SRB) and services (MapServer, LSID), plus
support for automated document harvesting. Consequently, Metacat is a

superior database for long-term storage of EML metadata and other
authoritative XML documents in LTER and other environmental science
networks..

For information about all the XQuery-based web services deployed for
the ProjectDB database, please visit the LTER Research Project Database
page on the LTER Information Management website (Gries et al.).

References

Walsh, J. and Downing, J. 2008. PROJECTDB – Planning and Development
of a Collaborative Programming Effort. LTER Databits - Information
Management Newsletter of the Long Term Ecological Research Network.
Fall 2008 Issue. (http://databits.lternet.edu/node/33)

Gries, C., O’Brien, M., Porter, J., Sheldon, W., Walsh, J. and Bohm, S.
Documentation for the LTER Research Project Database. LTER Information
Management Website.
(http://intranet.lternet.edu/im/project/LTERProjectDatabase/documentat
ion)

Walmsley, P. 2007. XQuery. O’Reilly Media, Inc. Sebastopol, California.
491pp.

